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ABSTRACT
Motion tracking technologies and avatars in virtual reality (VR)

showing the movements of the own body enable high levels of pres-

ence and a strong illusion of body ownership (IBO) – key features

of immersive systems and gaming experiences in virtual environ-

ments. Previous work suggests using software-based algorithms

that can not only compensate system latency but also predict future

movements of the user to increase input performance. However,

the effects of movement prediction in VR on input performance

are largely unknown. In this paper, we investigate neural network-

based predictions of full-body avatar movements in two scenarios:

In the first study, we used a standardized 2D Fitts’ Law task to

examine the information throughput in VR. In the second study, we

utilized a full-body VR game to determine the users’ performance.

We found that both performance and subjective measures in a stan-

dardized 2D Fitts’ law task could not benefit from the predicted

avatar movements. In an immersive gaming scenario, however, the

perceived accuracy of the own body location improved. Presence

and body assessments remained more stable and were higher than

during the Fitts’ task. We conclude that machine-learning-based

predictions could be used to compensate system-related latency

but participants only subjectively benefit under certain conditions.

CCS CONCEPTS
•Human-centered computing→HCI design and evaluation
methods; Virtual reality; User studies.
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1 INTRODUCTION
Motion tracking technologies and avatars in virtual reality (VR)

that show the movements of the own body enable high levels of

presence and the illusion of body ownership (IBO ) – key features of

immersive systems and gaming experiences in virtual environments.

Strong presence and the IBO is perceived when a sense of full-

body ownership [14, 43, 45] and agency [23, 35, 48] allow users to

correctly locate their body pose within the virtual environment.

When users move their own limbs through active motor control,

the brain’s expected positions must match the perceived sensory

afferent modalities such as gaze, haptics, or body proprioception [7,

14, 41, 51]. Consequently, lacking temporal synchronicity [44] or

spatial congruence [8] between the real and the virtual movements

can cause conflicting cues from the visual and vestibular afferent

and, thus, VR motion sickness or postural instability [1].

To prevent delays between the real and virtual body movements

sophisticated tracking systems seek for low to zero latencies. De-

spite technological advances in hardware that detects movements

precisely and quickly, a residual latency remains that can only be

compensated by software to provide real-time tracking. However,

software-based prediction algorithms are not only capable of esti-

mating a user’s recent pose [30] and to remove delays caused by

the system [39] but also to go beyond the latency of the hardware

and to predict where one’s own body will be in an upcoming time

step beyond the recent position [15, 27]. However, the effects of

machine learning (ML)-based algorithms predicting real-time or fu-

ture movements of the own body particularly in the context of time

critical input performance or immersive experiences are currently

unknown. Previous research of linearly extrapolated movements

indicates that induced a “lighter weight” sensation [22], however,

objective findings about using neural networks able to predict the

https://doi.org/10.1145/3385956.3418941
https://doi.org/10.1145/3385956.3418941
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own movements in VR or input measures quantifying the input

performance in a gaming scenario are currently unknown.

An investigation of how movement predictions in VR change

the perception of people is particularly important for the design of

systems that are on the one hand designed to improve the users’

input performance, but on the other hand not at the expense of an

immersive experience hindered by the asynchronicity between the

real and virtual body. Thus, the research question is, which predic-

tion time is the best tradeoff between the increased performance

due to e.g. accelerated body parts and the negative effects caused by

a reduced IBO . The use of ML-based algorithms to calculate future

movements seems feasible and to be particularly promising to an-

swer the research question. Using ML-based algorithms to compute

future movements is widely acknowledged in human-computer

interaction (HCI) research [15, 16, 27] and particularly promising

to answer that question.

In this paper, we investigate the effects of ML-based prediction of

avatar body movements in VR on human input performance in two

studies: In the first study, we used a standardized 2D Fitts’ Law task

to examine predicted as well as delayed (from −50ms to +200ms)
human body movements in VR on information throughput. In the

second study, we utilized a realistic full-body VR game to deter-

mine the gaming performance when avatar body movements are

being predicted using the same conditions as in our first study. We

found that both performance and subjective measurements of the

participants in a standardized 2D Fitts’ law task could not benefit

from the predicted avatar movements. In an immersive gaming

scenario, however, the perceived accuracy of the own body location

improved. Presence and body assessments remained more stable

andwere higher than during the Fitts’ task even at higher prediction

times. We contribute with an approach for avatar-based full-body

movement prediction using ML and conclude that predicted move-

ments could be used to compensate system-related latency, but only

subjectively benefit in certain scenarios with future predictions.

2 RELATEDWORK
Algorithms able to predict the users’ movements are often used to

compensate system-based latencies. Thus, our work is related to

previous work compensating latencies and predicting movements

on real devices first. We then discuss related approaches to predict

body movements in VR.

2.1 Latency and Software-Based Predictions
Latency denotes an inevitable delay between a stimulus and the

corresponding response of a system. Thus, latency also describes

the responsiveness of a system that actually is supposed to react in

real-time [29, 36, 49]. Awidely recognized test tomeasure the effects

of system-based latency on human motor control goes back to Paul

Fitts [10]. Using Fitts’ law paradigm [28] previous work repeatedly

showed that very small amounts of latency are noticeable and

can reduce a user’s performance [20, 29]. For example, MacKenzie

and Ware [29] found how delays negatively affect human input

performance and measured a continuous performance degradation

from 8.33ms to 225ms to a total of 63.9% increased movement time

and 214% higher error rate compared to the zero lag condition.

However, the perception and the objective effects of latencies

depend on the task. For example, Pavlovych and Stuerzlinger [36]

showed that latency of real-time systems is able to negatively affect

user performance in a 2D target following task. The authors found

that errors increased for latencies of over 110ms , for latency jitters

above 40ms , and for dropout rates of more than 10%. Moreover,

Jota et al. [20] found lower thresholds for detecting latency while

dragging than for tapping. Using a stylus humans are even able to

discriminate latency differences of ca. 1ms [33]. Researchers have
also shown that perception of latencies changes other properties of

the system. For example, users perceive buttons with longer delays

as being heavier, with a need for greater force when pressing [21].

As even very low latencies are noticeable and negatively af-

fect the performance, researchers proposed different approaches

to compensate latency. Such approaches can be categorized into

hardware-based [5, 33, 34] and software-based [15, 16, 33] ones.

While hardware-based approaches heavily depend on the technol-

ogy, software-based approaches can be readily deployed into off-the-

shelf applications and adapt to delays caused by the hardware [27].

While early application use linear extrapolation [50] recent work

predicts movements using artificial neural networks (ANNs) and

achieve higher throughputs and faster reaction times than classical

approaches [15, 16].

Movement Predictions in VR
End-to-end tracking delays between the rendering of a 3D environ-

ment and one’s own head movement have dramatic consequences

on the users’ perception and their well-being. They produce vestibu-

lar conflicts that result in VR motion (or cyber) sickness, degraded

or oscillating vision, and reduced input performance [3, 25, 26]. For

example, Meehan et al. [32] compared end-to-end latencies using

a head-mounted display (HMD) with delays between 50ms and

90ms. The authors showed that higher latency results in a lower

sense of presence and weaker physiological fear/stress responses.

Findings by Ellis et al. [9] indicate that perceptual stability across

virtual environments requires latency of an HMD less than 16ms .
Not only head movements, but also avatars are subject of re-

search investigating the effects of delayed movements on the IBO .

A strong IBO is perceived when full-body ownership [14, 43, 45]

allow users to correctly locate their whole body pose within the vir-

tual environment. For example, Waltemate et al. [49] examined the

impact of latency on perceptual judgments and motor performance

in closed-loop interaction in VR using avatars and found that more

complex movements rather induce a strong sense of ownership

“than a simple button press” [49], even despite high latencies of

the visual feedback. The authors assume that participants rather

rely on correlation between the temporal structure of the motor

and visual signals to infer a common cause. Interestingly, findings

by Imaizumi and Asai [4, 18] indicate that the sense of ownership

might be more affected by latencies than the sense of agency.

Due to the immense consequences of VR motion sickness, re-

searchers and developers seek to reduce delays and to predict

head [2, 39, 50] and body [22, 31, 42] movements to improve sub-

jective experiences and objective measures. Wu and Ming demon-

strated that compensating delays using head movement extrapola-

tion techniques in VR can improve human performance in spatial
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tasks [50]. The authors used linear extrapolation functions to pre-

dict HMD movements and found that humans performed signifi-

cantly better than without latency compensation. Based on their

work, Kasahara et al. [22] estimated past and future body positions

using a time-based linear extrapolation model where the amount of

temporal shift could be adjusted using a continuous time value. The

virtual human avatar movement model generated ranged from 25

to 100ms in the future and subjectively induced a “lighter weight”

sensation [22]. ANNs were used to predict head movements and

to calculate the translation of a virtual camera in an upcoming

frame [39] as well as for inverse kinematics (IK) end-effector move-

ments [37].

2.2 Summary
Real-time systems often suffer from latency [20, 28, 29, 36, 49].

While hardware-based latencies [5, 33, 34] are difficult to realize

and cannot predict future movements, software-based algorithms

are being used to improve the interaction with real devices and

to increase input performance [15, 16, 33]. Considering VR, delays

can cause forms of sickness [3, 9, 25, 26, 32] and the prediction of

body movements is being used to overcome such delays [39, 50].

Previous work also uses classical software-based approaches to esti-

mate future movements [22]. While ANNs are used to predict head

and end-effector translation [37], the effects of full-body-related

predictions using ANNs and evaluations of system with embodied

users, gauging how latency compensation and future predictions

are actually perceived by the user, are currently unknown.

3 DATA COLLECTION AND MODEL
Similar to previous work [15, 27], this research follows a data-

driven approach to explore the effects of machine full-body avatar

movements prediction in VR using ANN:

(1) Gathering the data set: A preliminary data acquisition study

was conducted to collect the data necessary for training

an ANN. Participants were instructed to perform natural

motions. Motions of the participants were recorded using

common motion capturing technologies.

(2) Model and system development: ML-based algorithms were

trained based on the data set and tested for real-time capa-

bility to investigate the feasibility of motion prediction of

movement in real-time. We optimized the model parameters

to achieve the highest accuracy on the test set and speed of

the prediction of the client software.

(3) Evaluation of the models in two user studies: a standardized

task according to Fitts’ law and a fully-body VR game. As

optimizing purely for the test set increases the probability of

introducingmodel overfitting, we evaluate the generalization

of our model with a validation set.

To enable future work to improve our results based on steady

advances in machine learning research and specialized models, we

publicly released our data set (see end of this paper).

3.1 Full-Body Motion Data Collection
A preliminary data acquisition study was conducted to collect the

data necessary for training and understanding of an ANN capable

of predicting motions in real-time.

3.1.1 Apparatus. To track full-body motion, we used an OptiTrack

motion tracking system with twelve cameras (8 PRIME 13 and 4

PRIME 13W) mounted on a traverse and covering a 4.2m x 3.9m

tracking volume. We calibrated the OptiTrack system according

to the manufacturer’s specification and achieved an “exceptionally

precise” calibration result with an overall reprojection error of

.853mm. Participants wore a marker-based full-body suit with 49

markers. The motion tracking software was running on a dedicated

PC with Windows 10, Intel i7-8700, 26GB RAM, and a NVIDIA

GeForce GTX 1080 with 8 GB RAM graphics card. The boundary of

the tracking volume was highlighted with white stripes on the floor.

To provide the best motion tracking using our hardware, takes were

recorded using OptiTrack Motive 2.2 with the maximal framerate

of 240 Hz. Thus, 1 frame corresponds to 4 ms.

3.1.2 Procedure and Tasks. After signing a consent form, partici-

pants put on one of threemotion capturing suits in their correspond-

ing body size (S, M, L). Skeleton of each participant was created and

calibrated in T-pose. Participants were orally instructed to perform

20 short tasks for ca. 30 seconds using varying directions, speeds,

and limbs. The tasks were designed to detail a broad range of mo-

tion of the human body including natural and wide variation of

movements. The tasks were: (1) waving with different hands, (2)

miming a sport they like, (3) looking at hands, (4) putting hands on

the back of the head, (5) walking comfortably in a circle, (6) turning

left, (7) turning right, (8) walking forward and back, (9) walking

back and forward, (10) circling the arms, (11) throw something from

below, (12) throw something from above, (13) hands on hips, (14)

stretching hands, (15) one step forward and back again (forwards,

backwards, left, right) (16) boxing (both hands), (17) jumping, (18)

small leap forward, (19) walk comfortably in a circle (3 × ccw), (20)

walking on a line (foot by foot). Task sequence was randomized for

each participant.

3.1.3 Participants. We recruited 20 participants (9 female, 11 male)

via mailing lists and compensated them with one credit point for

their study course. Their average age was 24.4 years (SD = 4.0)

and ranging from 19 to 30 years. All of them were right-handed.

Participants were not informed about the exact purpose of the study

(development of motion prediction models) that participants move

as naturally as possible.

3.2 Model and System Development
We present our data set and describe three steps towards devel-

oping finger identification models: (1) pre-processing the data set,

(2) exploring and using the data to train deep learning models

for predicting full-body motions, and (3) development of a client

software.

3.2.1 Data Pre-Processing. We recorded a total of 4233916 frames

(294.02mins) with a mean of 211695 (14.7mins) frames per partici-

pant. Data of the skeleton movements were visually inspected to

find potential errors. In some cases (ca. 15 of 100,000 frames), no val-

ues for bone skeleton position or rotation data were recorded and

skipped by the OptiTrack streaming protocol. Missing frames in the

recording were reconstructed using linear interpolation between

two samples. Data in the recordings (meta-data, frame sequence,

header data, ...), which were not processed by the OptiTrack Client
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implementation, were removed. As the individual rotation of the

finger limbs have been interpolated by the OptiTrack software, fin-

ger movement were not considered in further training. Rotation of

the remaining 21 joints of the human skeleton provided by Opit-

Track were processed using quaternions. As position data, except

the translation of the animation skeleton root, were omitted, the

training of the ANNs was, in sum, performed on 87 input values.

3.2.2 Stream Interceptor Software. To test the real-time capabilities

of the ANNs and to externally validate the prediction models, we

developed a native Python application to intercept the OptiTrack

stream and to replace the data with the output of the ANN. The

software performed several time-critical tasks: (1) unpacking the

UDP stream provided by OptiTrack, (2) feeding the raw data into

the loaded TensorFlow model, (3) waiting for model interference

and accepting the prediction, and (4) piping the output of the model

into the UDP stream. The software ran on the motion capturing

server to relieve the client running the real-time application in

Unity.

As each packet in the stream contained a single frame, the inter-

cepting client had to process each packet individually. The motion

capturing system ran at a frequency of 240Hz, which means that

every 4.167ms a client had to process the packet completely and

to forward it to the VR application before the frame would have

been discarded by the OptiTrack plugin due to buffer overflows.

Discarded packages would have caused the target application to

tremble limbs of the avatar representation. We evaluated the predic-

tion time of various network architectures using the intercepting

client. The PCs were connected via 1 GBit network connection.

3.2.3 System Latency Analysis. The marker-based OptiTrack mo-

tion tracking system Motive captures the movement of an object

or the human skeleton and broadcasts the data to one or more

external computers. Motive’s functionality of broadcasting motion

data is based on the NatNet streaming protocol
1
. The data is being

received in Unity
2
using the OptiTrack plug-in (version 1.2) pro-

vided by the manufacturer
3
. The data stream can be received by

any machine within a local network and it is possible to modify the

data, repackage it, and forward it again to the network and to the

Unity VR render engine running on an external PC.

However, the entire data transfer of the system, including compu-

tation, processing, and display of full-body motion data also suffers

from internal latency. In order to develop an ANN able to predict

motions upon the system-related latency, it is necessary to deter-

mine the time it took for the system to loop physical information

through the entire system. We used a latency test framework (LTF)

based on an Arduino microcontroller coupled to a vibration and a

photosensitive sensor determining the delay between a physical in-

and output. The initial timestamp of system delay was determined

after registering the vibration of the sensor triggered by a tracked

rigid body object. The virtual collision via OptiTrack has been deter-

mined by the Unity client receiving the intercepted stream. Further,

the Unity application registered the object collision and light up

the rendered view within the HMD by HTC Vive to indicate signal

change. Increasing light intensity has then been registered by the

1
https://optitrack.com/products/natnet-sdk/

2
https://unity.com

3
https://optitrack.com/unity-integration/

photo sensor and a second timestamp. Using the LTF, the difference

between both timestamp and the delay of the system infrastructure

has been determined multiple times (N = 120) with a mean of 51ms

(SD = 7) which corresponds to a prediction of 12 frames into the

“future”.

3.2.4 ANN Training and Model Development. Even when the prob-

lem of motion prediction cannot be considered as a real classifica-

tion problem, we used a customized Deep Neural Network (DNN).

A crucial factor in choosing the right ANN architecture was the

time required for predicting the next frame. As the prediction had

to be computed in real-time, it was necessary to minimize the inter-

ference time. To achieve real-time computation, we designed the

network to be as simple as possible. In contrast to classical and con-

ventional implementation of DNNs, the network in this paper does

not use the SoftMax function, since a categorical representation of

the probability distribution of the output yields no benefit.

A network consists of 87 input neurons from the recorded raw

motion data were passed to the first of two hidden layers. The first

hidden layer contains 4096 units and is fully connected to the second

hidden layer with 8192 units. A dropout function has been added to

the second hidden layer [17, 46] to prevent the network from over-

fitting. The dropout rate was chosen to be deliberately low (20 %)

to avoid slipping in the under-learning range. The output layer

follows subsequently with built-in ReLu activation function [12].

For stochastic optimization we used a variant of the ADAM [24]

optimizer, which is included in TensorFlow.

The training process was initiated with a learning rate of 0.001

and a batch size of 512 samples. By using Keras callback func-

tions [6], the learning rate could be dynamically adjusted during

the training process. Depending on the validation accuracy, the

learning rate was either increased or decreased up to a fixed thresh-

old value. This process is comparable to classical learning rate

decay in stochastic gradient descent method implemented in Ten-

sorFlow [47], but the herein presented implementation showed to

be much more effective in dealing with optimization plateaus. The

loss has been fitted via computing the mean square error (MSE) as

shown in Formula 1.

MSE =
1

n

n∑
i=1

(Yi − Ŷi )
2. (1)

First tests with the model showed that the neural network was

able to solve the given problem, however, the accuracy did not di-

verge clearly against a value, which was caused by the implemented

dropout function in the last hidden layer. To fix this problem, we

implemented a Keras callback function which allowed the model

to cancel the training process if performance deteriorated. In such

cases, the previous version of the model was loaded and saved. This

procedure is called Early Stopping (ES).

3.2.5 Model Selection. Considering the computation time of the

client alone (1.42ms), the time for model interference had to be be-

low a duration of 2.747ms (cf. Stream Interceptor Software). We eval-

uated the prediction time of common network architectures: a clas-

sical DNN structure (M = 2.543, SD = .941), a classical recurrent
neural network (RNN) structure (M = 5.136, SD = 2.107), an RNN

based on CudnnLSTM units (M = 4.055, SD = 1.846), and an RNN
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based on CudnnGRU units (M = 3.492, SD = 1.466). Only the

classical DNN structure could further be considered as solver, as

all other architectures did not reliably remain below the 2.747ms

interference time limit within our system.

Using that DNN structure, we built various models that differ in

their prediction time. The accuracy of the prediction decreases the

further the motion forecast lies in the future. Inaccuracies in the

prediction are noticeable through tremor of the own limbs, which

would – transferred to fully-body motions in VR – no longer enable

any interaction or illusion of limb ownership. Thus, we initially

explored different prediction times using a VR prototype starting

from 100 frames (416ms) with an accuracy of 37.2% while using

90% of the data for training and 10% for internal validation. As

the accuracy was too low to enable any interaction with the VR

prototype, we successively reduced the prediction time to achieve

an adequate tradeoff between prediction and accuracy. Acceptable

accuracies for interaction were found to be above 85%.

To determine the effects of avatar motion prediction in VR, we

used four time intervals starting with 12 frames (zero latency) to

be tested in our user studies. Thus, final prediction times were 12

frames (50ms) with an accuracy of 94.2%, 24 frames (100ms) with

an accuracy of 91.4%, 34 frames (150ms) with an accuarcy of 89.5%,

and 48 frames (200ms) with an accuracy of 86.6%. Position and

orientation of the virtual head (or headset) were not predicted to

avoid any motion sickness. All studies received ethics clearance

according to the ethics and privacy regulations of our institution

and, thus, follow the policies of our country and funding body.

4 STUDY 1: FITTS’ LAW TASK IN VR
Subject of the herein research is to determine the effects of predict-

ing a user’s motion using avatars in VR. As already indicated, a

widely acknowledged model of human motor control was proposed

by Paul Fitts [10]. We determined in our first study the effects of

motion prediction using ANN on the impact of motion prediction

and human motor control in a 2D Fitts’ law task [28] in VR.

4.1 Study Design
We conducted a VR user study to test the hypothesis that differ-

ent Prediction Times will have an effect on user performance

(throughput), presence, and body ownership. We used Prediction

Time as within-subject variable. We expected to increase those

measures while compensating the system latency and then to de-

crease them with higher Prediction Times. In addition to the four

ANN models (+50ms,+100ms,+150ms,+200ms), we also tested a

0ms condition without prediction as baseline. To understand how

the measures behave while adding latency, we added a -50ms con-
dition, streaming the skeleton data from 12 frames in the past. The

six Prediction Times have been evaluated using a 6× 6 balanced

Latin square design.

We collected data about input performance, presence, and body

ownership. Effective throughput as measure of input performance

has been computed based on the duration between two targets

and the position data of the target selection (see Data Analysis).

To measure presence, we used the igroup presence questionnaire

(IPQ) [38, 40] with the subscales general presence (GP), involvement

(INV), realism (REAL), and spatial presence (SP). The IBO has

Figure 1: Participant in a full-body motion capturing suit
performing the Fitts’ law task.

been quantified using the avatar embodiment questionnaire by

Gonzalez-Franco and Peck [13] with the subscales body ownership,
agency/motor control, and location of the own body. To learn if pre-

diction of one’s own motions can cause motion sickness, we used

the motion sickness assessment questionnaire (MSAQ ) scale [11].

To gain more insights about the subjective experience, we con-

ducted then a semi-structured interview based on six questions:

(1) How did your body feel during this condition? (2) What did

you notice during this condition? (3) Was this experience positive

or negative for you? (4) Did you notice any differences in regards

to the other iterations? (5) Were you able to chose your targets

precisely? If not why. (6) How did the digital avatar feel to you?

Thematic analysis was used to identify common themes within the

feedback.

4.2 Apparatus and Procedure
The participants performed the task according to Fitts’ law while

sitting close to a squared table (1m×1m). The table functions as hap-

tic feedback when hitting targets. Table was repositioned with its

height to 76 cm above the floor, resembling common desk heights.

The virtual task was displayed on a virtual representation of the

table. Participants were told to sit upright to keep an equal distance

to the targets throughout the study’s duration. We used the HTC

Vive HMD with wireless adapters to provide the VR experience.

Target frame rate was set to 60 frames per second (fps). The Unity

(2019.1.15f) application rendered real-time soft shadows allowing

easier spatial orientation when selecting targets. We used an an-

drogynous human-like virtual avatar created in DAZ3D to render

the own body.

Participants were informed about the purpose (testing different

motion tracking algorithms) but were blind to the conditions of

the study. After signing the consent form, participants put on the

motion capturing suit according to their size. We calibrated the

participant’s skeleton using the OptiTrack software. After taking a

seat, the participants put on the HMD. Then, we started the Unity

application with one of the six conditions and participants were

asked to perform the Fitts’ task. Each of the 16 trials of the Fitts’

law task has been repeated twice. After each condition, participants

were asked to remove their headset and to answer the question-

naires. The questionnaire itemswere presented in randomized order.

Subjective experience items were asked verbally.
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Figure 2: Mean effective throughput (TPe ) measures during
the Fitts’ law task for each condition. Error bars show 95%
confidence interval (CI95).

4.3 Participants
We invited 24 participants (11 females, 13 males) via mailing lists.

The participants mean age was 23.2 year (SD = 3.24) ranging from

19 to 31 years. Two participants were wearing contact lenses, 4 took

their glasses off or were comfortable with wearing them under-

neath the HMD. All participants were students and compensated

with credit points for their study course. None of the participants

reported having previous experience using virtual reality devices

and none of them had taken part in our data collection study.

4.4 Results
We determined the effective throughput (TPe ) using the model

proposed by MacKenzie and Buxton [28]. The model provides an

improved link to information theory, better fits, and index of dif-

ficultys (IDs) that cannot be negative (cf. ISO 9241-411 [19]). To

compare the different Prediction Times we used the mean of the

trials to get a single value for each participant per condition. No

filtering of the data has been applied.

On average, participants spent 41.7mins (SD = 24.2) in com-

pleting the Fitts’ law part of the experiment in VR. The average

completion time of the whole experiment was about 75mins . Each
participant performed a total of 1728 target selections. Effects of

the six conditions were tested using one-way repeated measures

analysis of variances (RM-ANOVAs). All tests were employed at

a significance level of 5 percent (α = .05). As Shapiro-Wilk tests

on condition level indicated that the assumption of normal distri-

bution (p > .05) has been violated for all measures, we performed

Friedman tests for nonparametric data.

4.4.1 Throughput. The average throughputs as performance mea-

sures between the conditions are shown in Figure 2. Friedman tests

showed an effect of Prediction Time, which could be confirmed,

χ2(5) = 84.79, p < .001. Bonferroni corrected pairwise Wilcoxon

signed-rank tests were performed to determine between which

conditions significant differences occurred. Significant differences

(p < .007) were found between all pairs, except for -50ms and
+50ms (p = 1), +100ms and +150ms (p = .131), and +150ms and
+200ms (p = .436).
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Index of Difficulty (Distance/Size)

2.10 (0.7/1.5) 2.84 (0.7/2.5) 3.10 (0.7/3)

3.32 (0.3/1.5) 4.06 (0.3/2.5) 4.32 (0.3/3)

4.32 (0.15/1.5) 5.06 (0.15/2.5) 5.32 (0.15/3)

all trials

Figure 3:Mean distances from each selection point to the tar-
get center for all featured IDs indicate a decreased precision
with increased prediction times. Distance and target size are
in cm. Error bars show CI95.

4.4.2 Movement Time. A Friedman analysis of variance (ANOVA)

revealed a significant effect, χ2(5) = 78.41, p < .001. Pairwise post-
hoc comparisons showed that there were significant differences

between all measures (p > .05), except for -50ms and +50ms (p = 1),

+100 ms and +150ms (p = .131), as well as between +150ms and
+200ms (p = .436).

4.4.3 Movement Precision. To learn more about the quality of

the predictions, we analyzed the mean distance from the target

center as precision measure. We found significant effects effects,

χ2(5) = 44.90, p < .001, and post-hoc tests revealed significant dif-

ferences between -50ms and +100ms (p = .034), +150ms (p < .001)
and (+200ms) (p = .016). The 0ms base line showed significant dif-

ferences compared to the +100ms (p = .002), the +150ms (p < .001),
and the +200ms condition (p = .005). Statistically significant dif-

ferences were also found between +50ms and +150ms (p = .004).
Means of the precision measures considering the initial IDs given

by target distance and target size are shown in Figure 3.

4.4.4 Presence. Multiple ANOVAs on main and subscales of the

IPQ were performed and revealed significant effects for the main

score, χ2(5) = 13.701, p = .018, general presence subscale, χ2(5) =
12.323, p = .03, spatial presence subscale, χ2(5) = 18.566, p < .001,
and realism subscale, χ2(5) = 12.323, p = .03. No effects were

found on the involvement subscale,χ2(5) = 4.814, p = .438. Pair-
wise post-hoc comparisons of the main score, the realism subscale,

and the spatial presence subscale could not reveal between which

conditions significant the effects on those scales occurred (all with

p > .05). However, we found significant differences between -50ms
and +200ms (p = .03), between 0ms and +200ms (p < .001), as well
as between +50ms and +200ms (p = .016) on the general presence

subscale. Means and 95% confidence interval (CI95) of all presence

measures can be found in Figure 6 (blue line).
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4.4.5 Illusion of Body Ownership. The illusion of body ownership

has been measured using three subscales suggested by Gonzalez-

Franco and Peck [13]. Significant effects were found for all scales:

body ownership χ2(5) = 48.883, p < .001, agency/motor control,
χ2(5) = 53.981, p < .001, and body location, χ2(5) = 51.515,

p < .001. Pairwise post-hoc comparisons revealed significant dif-

ferences between -50ms and +200ms (p < .001) 0ms and +200ms
(p < .001), as well as +50ms and +200ms (p = .001) on the body own-
ership scale. For agency/motor control themean significantly differed

between -50ms and +100ms (p = .02), -50ms and +36ms (p = .03),
-50ms and +200ms (p < .001), 0ms and +100ms (p < .001), 0ms and
+150ms (p < .001), 0ms and +200ms (p < .001), as well as +50ms
and +200ms (p < .001). Body Location significantly differed be-

tween -50ms and +150ms (p = .028), -50ms and +200ms (p < .001),
0ms and +200ms (p < .001), +50ms and +200ms (p < .001), as
well as +100ms and +200ms (p = .007). Means and CI95 of body

ownership measures can be found in Figure 6. The negative effects

of predictions of one’s own body movements on performance and

presence increase with the uncertainty of ANN, which becomes

apparent through the trembling of one’s own limbs.

4.4.6 Motion Sickness. Effects on the perceived motion sickness

were found, χ2(5) = 31.553, p < .001, post-hoc tests, however, were
not able to identify between which of the conditions significant

differences occurred (all with p > .61). The increasing mean scores

of motion sickness indicate (see Figure 6) that motion sickness

increases with increased prediction times.

4.4.7 Qualitative Feedback. The participants were able to provide

subjective comments after each condition. We went through the

comments to identify attributes that have been associated with the

conditions. While the 0ms baseline condition was described to be

“fluid” (P10), “accurate” (P13), “normal” (P14), or “precise” (P16),

participants found that the -50ms condition was more likely “lag-

ging” (P8, P19), “slower” (P16, P20), or “hard” (P3). With increased

prediction times, the participants reported of “jittering” (P20 at

+50ms, P13 at +150ms), “flipping” (P22 at +150ms), “confusing”
(P23 at +150ms), or “annoying” (P7 at +200ms). Nevertheless, a low
prediction time (+50 ms) also seemed to have positive effects on

the experience such as to be “faster” (P19), “more fluid” (P14, P20),

and “well” (P12, P23). Participants had the impression that their

movements were "faster" (P5) and followed their real movements

“better" (P7).

4.5 Discussion
In our first study, we investigated the effects ofML-basedmovement

prediction of an avatar on the input performance in a Fitt’s law task

in VR. Predicting the limb rotation up to 200ms such as adding delay

(-50ms) negatively affects the throughput, presence, and illusion

of limb ownership. Higher prediction times even cause motion

sickness. Predicting one’s bodymovements inhibits any congruence

between the physical and the virtual body, which is required for

visuomotor integration and still takes place in the present. The

negative effects of predictions of one’s own body movements on

performance and presence increase with the uncertainty of ANN,

which becomes apparent through the trembling limbs.

Figure 4: Screenshot of the full-body VR game from the ex-
perimenter’s perspective with a player’s avatar, the arena
cage, and a hostile oversize wasp approaching from one of
four cage entries.

Precision measurements during the Fitts’ Law tasks show that

rather inaccuracies during the prediction than unplanned virtual

movements that precede the physical ones influence the results.

Nevertheless, the results still allow no generalization as the task

is mainly limited to the movement of the right arm and requires

physical feedback, which is rarely available in VR applications. Full-

body movements or an immersive real-time application that does

not require physical feedback have not been considered so far. Due

to the limitations that result from the Fitts’ task, we developed a

game that more closely simulates the requirements of an immersive

experience, does not happen while being seated, and involves all

limbs of the body in the interaction.

5 STUDY 2: VR GAME
We developed a VR game that utilizes full-body movement as basic

gaming mechanism. Thus, free avatar movements of the player

should provide an immersive experience and a mean to fight hostile

entities. This enables the introduction of a score that can be opera-

tionalized as an objective instrument to measure the performance

of users whose virtual movements are being predicted. Aim is to

determine the generalizability of findings from the first study and

to create a use case that directly implements whole-body movement

predictions as gaming mechanism.

5.1 Study Design
Similar to our first validation study, a one-factorial within-subject

study design has been carried out to determine the effects of Predic-

tion Times. We measured the gaming performance of our subjects

indicated by the players’ score reflecting their ability to hit hostile

entities. Sequence of the conditions was ordered via balanced Latin

square. We asked the same subjective measures (IPQ, IBO , MSAQ )

as in the previous study.

5.2 VR Game and Procedure
In the Unity-based VR game, the player is situated in a virtual

cage and attacked by hostile entities spawned in a surrounding

jungle environment. The cage indicates the tracking volume of our
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Figure 5: Mean values of the VR game scores for each predic-
tion time. Error bars show CI95.

laboratory, in which the player can move freely around. The cage

has four open doors that allow hostile oversized wasps to enter

the cage and to attack the player. The players’ objective during the

game was to hit attacking wasps using their hands before a wasp

can reach the avatar’s torso. A sting hit was indicated by a short

flashing red vignette in the field of view. To keep the player during

each condition engaged, we increased the pace by decreasing the

enemy spawn time by 90% every 3 seconds within a range from 4

sec to 1 sec. In total, 100 hostile wasps flew directly to the player

so that the target play time (140 sec) could only vary slightly due

to changes of the own position. If a player successfully hit a wasp,

she or he were getting rewarded with one point and the wasp

disappeared. Avatar appearance of the player was the same as in

our first study. Figure 4 shows a screenshot of the game from the

experimenter’s perspective. The player needs to actively watch out

for wasps coming from each direction.

After giving informed consent, participants put on one of the

three motion capturing suits and the HMD. Similar to our first study,

the skeleton configuration was calibrated in OptiTrack Motive. All

participants were unaware of the conditions and instructed to hit

the wasps and to score as many points as possible. Since the wasps

came from different directions, the participants had to duck, turn

their bodies, and use other parts of their body (e.g. their feet) to get

points. After each condition, the participants had to complete the

questionnaires. To gain more subjective insights, we asked them if

they had any further remarks regarding the system.

5.3 Participants
We recruited 24 students (9 females, 15 males) via mailing lists of our

institution. Mean age of the participants was 25.4 years (SD = 4.1)

ranging from 19 to 33 years. Two participants were left handed.

The participants were compensated with credit points for their

study course and snacks. None of them was involved in our data

collection study.

5.4 Results
The overall play time per condition was 140 sec on average (SD =
0.78) ranging from 139 to 141 secs. The timing show that play time

remained constant and ensured an unbiased gaming experience

between all Prediction Time conditions.

5.4.1 Game Score. Friedman ANOVA showed a significant effect

of Prediction Time, χ2(5) = 18.559, p = .002, on the game score of

the players. Pairwise comparisons usingWilcoxon signed rank tests

showed a significant difference between -50ms and 0ms (p = .033)
as well as between -50ms and +100ms (p = .028). Mean values of

the gaming scores are shown in Figure 5. Adding prediction did not

decrease the gaming performance to the extent to which latency

decreased the score.

5.4.2 Presence. There was no significant effect on the IPQ main

score, χ2(5) = 6.735, p = .241, however, on the general presence

subscale, χ2(5) = 12.975, p = .023. Subscales for involvement,

χ2(5) = 5.870, p = .319. realism, χ2(5) = 8.134, p = .375, and
spatial presence, χ2(5) = 5.349, p = .374, were not significant.

Pairwise comparisons of the general presence subscale revealed

significant differences between -50ms and +50ms (p = .013), as
well as between +50ms and +200ms (p = .003). Subscale means are

shown in Figure 6 (red lines).

5.4.3 Illusion of Body Ownership. There were no effect of Pre-

diction Time on body ownership, χ2(5) = 5.289, p = .381, and
agency, χ2(5) = 6.932, p = .225. Significant effects were found

for location, χ2(5) = 27.418, p < .001, with significant differences

between -50ms and +50ms (p = .013), as well as between +50ms
and +200ms (p = .004). Mean values (Figure 6 show that the highest

perceived body location ratings were achieved during the +50ms
condition.

5.4.4 Motion Sickness. No effects were found on the measures of

the MSAQ scale, χ2(5) = 8.191, p = .146.

5.5 Discussion
In our second study, we used a full-body motion capturing VR gam-

ing environment to investigate the effects of predicted movements

of the own avatar. Gaming performance indicated by the score

(hostile entity hits) after each round indicated significant higher

mean scores during the baseline condition and using the +50ms

prediction model as used in the delayed condition with -50ms. Us-

ing our movement predicting models, all participants performed

higher gaming scores than in the delayed condition. Highest scores

were achieved during the baseline condition tough, however, the

results indicate that predicted body movements do not decrease

a user’s performance to the same extent as in the -50ms delayed

condition. We even found that ratings of the perceived correct body

location were the highest using the +50ms model. This indicates

that games can benefit from overcoming the system-related latency

using motion prediction of body movements using ANN. We as-

sume that predicting one’s own body movements enable players in

an immersive environment to believe that they respond faster and

more accurately.

6 GENERAL DISCUSSION
In two studies, we explored the effects of full-body avatar movement

predictions in VR using ANN. In our first study, we found that both

performance and subjective measures in a standardized 2D Fitts’

law task could not benefit from the predicted avatar movements.

Interestingly, the prediction leads to similar interferences in one’s

own motor control in terms of performance and task performance
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Figure 6: Mean ratings of presence and presence subscales of the IPQ, illusion of body ownership (IBO) subscales, and motion
sickness during the Fitts’ Law task (Study 1) and the VR Game study (Study 2). Error bars show CI95.

as delays of those movements. An analysis of the precision and the

qualitative feedback show that the problems did not occurred due

to lacking body control cause by the time difference, but due to

inaccuracies caused by the models. In our second study, an immer-

sive gaming scenario, however, the perceived accuracy of the own

body location improved for the 50ms condition. Presence and body

assessments remained more stable and were higher than during the

Fitts’ task. We assume that games can utilize motion predictions

of one’s own body not only to overcome latency of the system but

also to use optimized models to increase the users’ performance in

VR.

In both studies, future motions generally make participants per-

form worse due to lacking congruency between real and rendered

movements. We assume that participants then intuitively slowed

down their movements to get back in that congruency and to re-

duce the visual difference between expected and rendered virtual

limb position. Using predicted body movements while playing the

VR game, we found not only that ratings of presence, involvement,

and body location were generally higher than during the Fitts’ task

but also that the likelihood of VR motion sickness caused by pre-

dictions of the own body movements occurred “later”. This means

that the participants were more likely to ignore negative effects of

the predictions while being involved in an immersive application

than during the monotonous and repetitive movement such as in a

Fitts’ law task.

Based on the game evaluation the participants experienced higher

levels of avatar body location during the 50ms predictions than in

any other condition. This could be due to the fact that this condition

offered the subjectively best body pose experience as the system

latency was within this time window (c.f. System Latency Analysis

subsection). Thus, we conclude that players could be more likely to

benefit from motion predictions than users of other applications if

speed and immersion can ensure that possible inaccuracies in the

prediction are being ignored.

6.1 Limitations and Future Work
Predicting the own body movement in VR was not able to im-

prove the performance of users and players, but in line with related

work [15, 16, 27], we see future potential to reduce latency. Higher

precision and accuarcy of model predictions can be potentially

achieved through improved hardware and more complex ANN

model architectures. More complex model architectures such as re-

current neural networks RNN, however, require significantly more

time for computation in real time and considering that duration

counter-effects a higher precision of the models as fewer pose in-

formation from previous frames are available. Better computation

hardware might overcome this issue. However, even a theoretically

perfect prediction of the users’ body movement might not increase

the performance when they cannot ignore the deviation between

own body scheme and the prediction. Source code, data, and assets

to replicate our work and to further explore the effects of full-body

movement predictions are available on github
4
.

We recommend to explore whether specifically captured data

and better hardware allow more accurate models resulting in better

user performance and better embodiment. In our Fitts’ task, we only

tested one experimental setup where all participants conducted the

task on an horizontal axis sitting at a table. Since VR environments

and the used motion capture systemwould theoretically allow other

movements, free standing configurations could be evaluated as well.

Additionally, providing and considering finer time steps and more

limbs such as fingers and toes could allow the system to predict the

users’ body movements with higher precision. We would also like

to point out the possibility of cheating in games using movement

prediction if the output signal is intercepted before it reaches the

other players in an online multiplayer game. The technology could

also be used to reduce lags in real-time video streaming of games

when graphics are being rendered on a remote server.

4
https://github.com/Slimboy-90/motionprediction

https://github.com/Slimboy-90/motionprediction
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