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ABSTRACT
Biometric user authentication is an important factor to ensure se-
curity and privacy for personal devices. While many devices such
as smartphones or laptops can be unlocked based on biometric
data, smartwatches or other wrist-worn mobile devices still rely on
knowledge-based schemes such as PINs or passwords. In a proof-
of-concept study with 24 participants, we show that it is possible to
identify individuals using sound waves passing through the wrist
bones using a bone conduction speaker and a laryngophone (micro-
phone). We tested support vector machines (SVMs) and artificial
neural networks (ANNs) for binary classification. Using ANNs our
method shows an authentication accuracy of 98.7%. We discuss the
implications of integrating our approach into future devices and
contribute with our findings in doing the first step for continuous
passive user authentication at the wrist.

CCS CONCEPTS
•Human-centered computing→Haptic devices; •Computing
methodologies→ Classification and regression trees; • Security
and privacy→ Usability in security and privacy.
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1 INTRODUCTION & BACKGROUND
User authentication for pervasive computing devices is important
to secure personal data and access. In addition to knowledge-based
schemes such as passwords, gestures [10], and personal identifi-
cation numbers (PINs), some devices use biometric data such as
fingerprints [14], bodily [6] or facial characteristics [5] to authorize
access for users. Most of current handheld devices allow access per
user session using biometric data with an active input as one-time
authentication. Repeatedly or continuous checking the user for
device access can massively restrict the device interaction when
frequently asking to manually enter the PIN, to perform a gesture,
or to constantly keep the face upright to the front camera. How-
ever, wrist-worn devices with limited displays for user input, while
poorly suited for knowledge-based input, can be worn continuously
and passively collect functional biometric data [2, 13, 25].

Functional biometrics considers the human body as a function
𝑓 in which a device sends a continuous signal 𝑥 which is reflected
by the body in an unique way. The reflection 𝑓 (𝑥) can be read by
a receiver and be used for authentication of the user [15]. Passive
functional biometrics can result in a higher security compared to
active authentication methods, where the user has e.g., to enter
a PIN or password [11]. For example, Khorshid et al. show that a
high authentication accuracy can be achieved by sending signals
from electrodes on the arm through intrabody communication
channels [7]. Other research utilizes vein patterns using thermal
imaging [4] or vibration response patterns on the human body such
as the system VibID [27]. However, a very promising and easy-to-
implement approach with high abundance is the principle of bone
conduction [18, 24].

Bones can be characterized using acoustic waves propagating
through the bone tissue. Their properties can even be determined
by speed-of-sound measurements [23]. Bone conduction can be
used, for example, to transmit sound waves to the cochlea causing
an improved sound perception for people hard of hearing [12].
Therefore, the use of bone conduction is widely used in technologies
for hearing aids, which are placed at the outer or inner part of the
ear [21, 22]. Main working principle of those devices is using analog
acoustic signals within the audible range. Also the skull transmits
a range of sound waves from the outer ear to the inner ear without
significantly changing the intrinsic signal [26]. The effectiveness
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Figure 1: Photo and concept illustration of WristConduct. The vibration speaker (A) is transmitting sound waves from an
amplifier (B) into the bone tissue of the ulna bone. A laryngophone (C) was used as signal receiver and placed on the top of the
radius bone. Sound waves have been recorded and later classified using a personal computer (D).

of bone conduction depends strongly on the bone that is used,
e.g., the skull will behave like a rigid body at low frequencies,
at higher frequencies it will incorporate different types of wave
transmissions [22].

Previous work successfully demonstrates the utilization of bone
conduction with wearable mobile devices on different body parts [8,
17, 18, 29]. For example, ViBand [8] and OsteoConduct [29] are
two systems that use bone conduction for communication between
devices. While OsteoConduct measures the reflected frequency on
the elbow joint, ViBand measures sound directly on the wrist for
passive object and activity recognition. Based on these paradigms,
Roy and Choudhury, for example, implemented a system that allows
users of smartphones to communicate with a ring or a watch by
using bone conduction [17]. More related to our research, Schnee-
gass et al. developed "SkullConduct" that authenticates users based
on the biometric properties of their skull [18]. The device uses the
integrated bone conduction speaker of a Google glass device near
the ear that sends white noise in a specific frequency that gets
recorded by a microphone in the front of the eyewear. Velasco et
al. took up the idea and suggest a general machine-learning based
user authentication algorithm for sound classification of bone con-
duction without committing to a specific device [24]. However,
it is currently unknown if bone conduction directly at the wrist
(between ulna and radius, see Figure 1) is able to authenticate or
identify individual persons.

In line with previous research suggesting that sound signals
sent through bone tissue can have a high authentication accuracy
because of the uniqueness of the human body structure [7, 11],
we investigated the general feasibility of a proof-of-concept bone
conduction system placed at the wrist to identify and authenticate
individual subjects. Similar to previous work that uses unique re-
flected frequencies and the principle of bone conduction at the skull
for unlocking head-mounted displays [18], we use bone conduction
at the wrist to provide fast and reliable biometric authentication
for potential wrist-worn devices such as smartwatches and fitness

bands. Using machine learning trained classification we are able
to distinguish an audio recording of a fixed signal recorded on
the wrist of a specific person from the same signal recorded on
an extraneous person. Thus, we conducted a pilot study with 24
subjects and our prototype to test the robustness of the approach.
With neural networks, we were able to achieve an average model
accuracy of overall 99.1 % and a false negative rate of 0.07 %. We
contribute with our findings and discuss further approaches that
can also be used for passive and continuous user authentication for
wrist-worn mobile devices.

2 SYSTEM & EVALUATION
To investigate the feasibility of sound propagation using bone con-
duction at the wrist, we developed a proof-of-concept hardware
prototype and a software classification system using neural net-
works. Hardware prototype and concept are shown in Figure 1. As
current devices off-the-shelf mobile devices (e.g., smartwatch or
fitness tracker) only use air and no bone conducting speaker or
contact microphones (c.f. [18]). Thus, our hardware consisted of an
AIYIMA 2 inch 25W resonance vibration speaker (TPA3118) with
a 12V/5A power amplifier and a laryngophone – a contact micro-
phone for Yaesu Vertex VX and throat-based push-to-talk devices.
The laryngophone was used as signal receiver and placed on top
of the radius bone at the right wrist of the subject’s arm. The bone
conduction speaker was placed on the bottom side of the wrist at
the ulna bone. Sound has been recorded with a personal computer.
A three seconds uncompressed white noise sound sequence ranging
from 0 to 44100 Hz with 16 bit/s was used as audio signal for the
transmitter.

Sound propagation of 24 computer science students (19 m, 5 f)
within our institution were recruited in the context of our course
and compensated with credit points for the lecture. The partici-
pant’s age ranged from 20 to 27 (M = 23.15 SD = 2.83). The exper-
iment took place in our laboratory (a closed office environment)
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Figure 2: The power density (in dB) indicating the sound damping between the wrist bones for one of the ten recordings among
5 random subjects in the range of 0 kHz to 25 kHz (black line). White noise sound between resonance speaker and contact
microphone (without wrist) is indicated by the red line.

with low background noise. After providing informed consent par-
ticipants were asked to rest their right hand on the speaker (see
Figure 1, A) to ensure body contact with the device and to keep their
hand in a relaxed state. The position of the receiver was slightly
changed after each recording to avoid any bias or over-optimization
for one specific location at the wrist. Ten recordings were taken for
each subject. One of the recordings of each subject compared to the
original white noise are shown in Figure 2. In total, we recorded
240 labeled audio files. Acoustic recordings had a 41,000 Hz sample
rate and 16 bit/s without any file compression.

Main objective is a model that can authenticate a single specific
person and reject all extraneous persons. To obtain representative
results, we created a separate data set for each of the 24 test persons
by applying a positive label to the respective person and a negative
label to all other persons. The resulting 24 data sets were unbal-
anced, with 10 positive to 230 negative elements each. In order to
balance the datasets slightly more and at the same time not make
them too small, we turned each dataset into five datasets, each with
the identical 10 positive elements, however with a random selection
of 92 of the negative elements inserted. We divided each of the 120
data sets stratified into training (65%, N=78) and test (35%, N=42)
data, each of which were used to train and evaluate a dedicated
model. The Mel Frequency Cepstral Coefficient was used to extract
features from the recordings and create a numerical data set.

In a first step, we tested two common types of binary classifiers
provided by the Keras API by Google’s TensorFlow with different
levels of complexity: (1) low classification complexity: A support
vector machine (SVM) with stochastic gradient descent (SGD) using
weighted classes with and with a higher complexity (2) an artificial
neural network (ANN) with six dense layers, binary cross entropy
loss, and adam optimizer (200 epochs).

3 RESULTS
To consider the performance of the total 120 ANN models, we
determined the confusion matrix for the tests. Aggregated results
are shown in Table 1. More scores of classification refer to the sum
or to the respective means of the model classes. The accuracy of
the SVM initially appears to be similar fashioned with at 97.1 %,
but the F1 score of 87.0 % and a MCC of 85.4 % revealed a small
drawback of using SVMs with unbalanced data sets. With the ANN
models, we were able to achieve an average accuracy of 98.7 %, a
F1-Score of 94.4 % and a Matthew Correlation Coefficient (MCC) –
a superior metric in binary classification evaluation [3] – of 94.6 %.

The ANN models achieved a sensitivity of 96.1 %. Consequently,
the false negative rate is 3.9 %. Figure 3 shows the accuracy rates
for each of the models. Even more important in such a system,
however, is that extraneous persons are classified as negative. The
ANN model achieves a specificity of 99.3 %. Thus, the false positive
rate is 0.7 % and less than one percent.
The receiver operating characteristic (ROC) as shown in Figure 4
confirms these results. It indicates that for different threshold values,
a high true positive rate can be achieved, while the false positive
rate remains low. The area under the ROC curve (ROC-AUC) is
99.0 % (±.07) for the ANN.

Although we get slightly better results using the ANN model,
it is important to mention the efficacy of the SVM classification.
Though the quality of the ANN model is better, but the calculation
of ANNs can be computationally much more expensive. Using a
wearable device with small computing powers, a model with less
complexity, such as an SVM can be a suitable option, in particular
for passive and even continuous authentication with limited options
for energy consumption.

4 DISCUSSION
In a proof-of-concept study with 24 subjects, we tested the general
feasibility of using bone conduction at the wrist to authenticate
users with our WristConduct system prototype. We tested SVMs
and ANNs as binary classifiers and found the best accuracy using

Table 1: Confusion matrices of the test outcomes of Wrist-
Conduct for the support vector machines (SVM) and artificial
neural networks (ANNs) with the corresponding false nega-
tive and false positive rate (FNR/FPR) and other performance
measures.

SVMs ANNs

Predicted

True False FNR/FPR True False FNR/FPR

Neg. 3841 42 8.57 % 3867 19 3.88 %
Pos. 448 54 1.39 % 471 28 0.72 %

Sensitivity 91.4 % 96.1 %
Specificity 98.6 % 99.3 %
Accuracy 97.8 % 98.9 %
F1-Score 90.3 % 95.2 %
MCC 89.1 % 94.6 %



MuC ’22, September 4–7, 2022, Darmstadt, Germany Sehrt et al.

1 2 3 4 5 6 7 8 9 10 11 12131415161718192021222324
Test Subject

0.80

0.85

0.90

0.95

1.00

M
od

el
 A

cc
ur

ac
y

Model Accuracies per Test Subject (Model: SVM)

1 2 3 4 5 6 7 8 9 10 11 12131415161718192021222324
Test Subject

0.80

0.85

0.90

0.95

1.00

M
od

el
 A

cc
ur

ac
y

Model Accuracies per Test Subject (Model: ANN)

Figure 3: Average SVM and ANN accuracy rates for each of
the models (5) that were trained for each subject.

ANNs (98.9 %), which achieved a specificity of 99.3 %. With a false
positive rate of less than one percent (0.7 %), our approach shows
one of the highest classification performance rates compared to so-
lutions from the literature. For example, the scores indicate a better
classification performance compared to the related work with an
ANN (97.0 % accuracy and 3 % false positives) [18] or VibID (91 %
accuracy and 9 % false positives) [27]. Thus, the evaluation shows
that even with simple and cheap hardware as well as common soft-
ware classification, bone conduction at the wrist can be a promising
method of user classification and authentication.

Our data collection took place in a controlled and calm environ-
ment with low background noise and a static apparatus. Using a
bone conduction speaker with 25 W, the hardware was likely to be
more powerful than it might have been necessary for classifying
the audio data. Our research indicates that there is a potential for
miniaturization and optimization to integrate the hardware into
a portable device. Testing bone conduction with high ecological
validity in a more realistic setting requires to build a wearable bone
conduction authentication band with a smaller bone conduction
speaker and receiver microphone. Such bone conduction speakers
are already in use for communication systems, language develop-
ment approaches, mitigation of stuttering, acoustic investigations
and medical applications [16]. We are sure that there are possi-
bilities to further miniaturize the speakers and microphone while
improving their efficiency [28].

Another aspect of using bone conduction is the white noise
pattern, in which frequencies can be optimized based on the char-
acteristics of the human body. As we covered our device’s audio
range generously, we highly recommend optimizing the apparatus
and white noise for those audio characteristics. It may be possible
to develop such as band operating at inaudible frequencies so that
bystanders or the wearer do not hear the noise. Related to that fac-
tor is that the classification accuracy is based on the duration of the
white noise sequence. As the work by Schneegass et al. indicates,
more than five seconds do not contribute to a significantly better
audio classification performance [18]. Based on their results, we
chose a short duration, however, the results may differ with other
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Figure 4: ROC curve for both model types (SVMs and ANNs).
The lines represent the mean of the 120 models respectively.

hardware and can be optimized for continuous and passive usage.
Based on the moment when sensing the signal is distracting or
unpleasant for the user or potential bystanders the wearable can
have a low social acceptability (c.f. [19]). Probably with emitting
low-frequency sound waves there is the possibility of conducting
sound over the bones without users noticing the sound. We see
the greatest potential for improvement here and hope for further
research (c.f. [1, 25]).

In our study, we only implemented a stationary device due to
lacking hardware alternatives during the fast prototyping process.
Further, our approach has only been evaluated in a single experi-
mental session, however, future studies in repeated sessions (e.g., at
different days) are required to test and further improve the robust-
ness of the approach and the validity of the classification accuracy.
For testing the ecological validity of the approach, we also rec-
ommend to test the approach in a smaller device and different in
settings with acoustic backgrounds or environmental noise. More
factors that can influence the quality of the authentication are the
exact location of the speaker and the microphone on the wrist, the
audio volume, and pattern frequency.

Based on our results, we highly recommend to consider bone
conduction as a biometric measure not only for improved security
but also for improved accessibility of wearable devices and multiple
factor authentication. We recommend to further test the approach
at different sound settings and in multi-session designs (e.g., across
multiple days). Of course, we assume that there are potentially
more sophisticated deep-learning algorithms to detect sound waves
transmitted to bones. Thus, we recommend for future research to
investigate and optimize that factors and further increase the accu-
racy of the system using more sophisticated ANNs and additional
input vectors to reduce the classification error (cf. [9, 20]). To allow
other researchers to replicate and extend our findings, we published
our software and the full dataset at Github1

1https://github.com/antonroesler/Wrist-Conduct
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5 CONCLUSION
In a proof-of-concept study with 24 participants, we show the fea-
sibility to identify human users using propagating soundwaves
passing through bone tissue of the wrist using simple bone con-
duction speaker and a laryngophone (the receiver microphone)
with high accuracy. We tested support vector machines (SVMs) and
artificial neural networks (ANNs) as common means for binary
classification. Using ANNs our method shows an authentication
accuracy of 98.7% and a false positive rate of 0.7 %. We direct future
work to further explore the possibilities of wrist-based bone con-
duction for passive and continuous user authentication for mobile
and wearable devices.
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