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ABSTRACT
Datasets are multi-purpose research tools, enabling researchers to
design, develop, and test solutions to classical computer sciences
problems and novel research questions. In the gaming domain,
however, there are few high-quality datasets providing both: (1)
visual gameplay data and (2) additional information about the game-
play, such as user input. As a result, game researchers most of the
time have to collect, process, and annotate gameplay data in time-
consuming data collection studies themselves. We start closing this
gap, by presenting a novel Counter-Strike: Global Offensive dataset.
The contributed dataset is a collection of 12 high-skilled players
playing Counter-Strike: Global Offensive. We showcase two deep
learning-based examples using the presented dataset, demonstrat-
ing its versatility.
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1 INTRODUCTION
Datasets allow researchers to investigate research questions, con-
duct experiments, and test novel methods without requiring time-
consuming data collection. These datasets are usually highly versa-
tile and allowmulti-faceted research. TheModified National Institute
of Standards and Technology (MNIST) dataset [22], for example, is a
collection of 280 000 handwritten digits and was initially designed
to be used as a benchmark in a computer vision (CV) challenge. Mul-
tiple teams attempted, and still attempt, to find the best computer-
aided method for optical character recognition (OCR) [4, 9] in the
MNIST challenge. However, MNIST is now used for a broad range
of research projects due to its versatility. Shmelkov et al. [37], for
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example, used a generative adversarial network (GAN) trained on
the MNIST dataset to generate artificial images of handwritten
digits. In other work, Netzer et al. [31] used the dataset to train an
unsupervised feature learning algorithm to read digits in natural
images.

Publicly available datasets, such as MNIST, accelerated the devel-
opment of novel approaches to classic computer sciences problems.
Moreover, numerous research fields, such as medicine [16, 18, 30],
deep learning [13, 17], and natural language processing [3, 43]
benefited from datasets and their versatility. However, there are
few high-quality datasets available in the gaming domain. As a
result, gaming researchers need to gather data, annotate it and pre-
process it themselves [15]. Evidently, there are only few datasets
of Counter-Strike:Global Offensive (CS:GO) - a game played by
almost 600 000 unique players daily and which is highly relevant
to the e-sports scene [39, 40]. While some large datasets for CS:GO
are available [20, 21, 34], those datasets do not provide visual
game play data. These datasets do, however, provide valuable meta-
information such as the outcome of matches, statistics about used
weapons [21, 34], or behavioural data such as the eye movement
and gaze pattern about the players [20, 32]. A public datasets of
actual CS:GO game play, however, may accelerate research in and
with the game.

In this work, we start closing the gap between gaming research
and other data-richer research fields by providing a novel, yet still
small, high-quality gaming dataset. We present our ongoing en-
deavor to create a Counter-Strike: Global Offensive dataset. So far,
our dataset is a collection of twelve highly-skilled players (mean
playtime: 1864.08 ± 1042.69 hours) playing Counter-Strike: Global
Offensive (CS:GO). We recorded about 2 764 800 unique frames at
64 fps. We provide three versions of the material: (1) a pre-wrapped
Python Pickle in 60 × 34 pixel, (2) a further down-scaled Python
Pickle in 30×17 pixel, and finally (3) the original raw material using
CS:GO’s replay file format. Researchers using our dataset can either
use one of the provided formats or generate the desired output us-
ing the replay data and our presented approach. Besides the visual
material, our dataset is also highly annotated. For each recorded
frame, we provide information about the current game state, such
as the player’s health, the equipped weapon, or whether an enemy
spotted the player. Furthermore, we provide detailed data about the
inputs to the game, such as which keys are pressed and how the
mouse position changes between two consecutive frames.
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To conclude this work, we showcase two examples of using our
dataset. The first example uses the input part of the dataset to pre-
dict mouse movement in the game using an artificial neural network
(ANN). The second use case operates on the visual component of
our dataset to train an ANN to predict a visual frame in the future.
We provide all data via GitHub1. The repository contains all data,
annotations, our pre-processing pipeline as Python scripts, and the
source code to both ANNs showcased in this work. We encourage
researchers to build on our work and either expand the presented
dataset or use it in novel approaches to game research.

2 BACKGROUND
For some time, datasets were mostly published as a by-product of
a publication. However, nowadays, datasets are becoming increas-
ingly important and even can be considered the primary intellectual
output of research [6]. Dekker [6] reasons that the key rationale for
the relevance of datasets can be summarized in four points: (1) repli-
cation and verification of publications, (2) longitudinal research, (3)
interdisciplinary use of data, and (4) value enhancement through
cooperation and follow-up work. All of Dekker’s [6] proposed ra-
tionals are crucial to the advance of gaming research. One game
particularly relevant to the gaming research and especially to the
e-sport scene is Counter-Strike: Global Offensive.

Counter-Strike: Global Offensive is a team-based, fast-paced
first-person shooter (FPS) game published by Valve in 2012 [39]. In
CS:GO, two teams of five players compete against each other. One
team takes on the role of the so-called Terrorists, and the other team
is called Counter-Terrorists. The terrorists win a round by either
placing a bomb and thus detonating an objective or eliminating
all counter-terrorists. The counter-terrorists goal is to prevent the
terrorists from placing the bomb, either by guarding the objectives
or eliminating the opposing team. Despite this seemingly simple
premise, CS:GO is highly challenging and tactical, as it requires
extensive know-how about the game world, game mechanics, and
when to use which strategy to reach the objective. CS:GO is the
research object in numerous publications. Lux et al. [26], for exam-
ple, investigate how recorded CS:GO matches can be automatically
summarized. This allows for the easy creation of highlight videos,
which attract a larger audience than full-length videos. Other work,
such as the work of Makarov and Ignatow [28] researches proba-
bilistic methods to predict the winning team in CS:GO. Using their
probabilistic model, the authors found that the individual player
skill is useful in predicting the winning team. In similar work,
Xenopoulos, Harish, and Claudio [41] propose a novel graph-based
framework for CS:GO to value player actions in the game. Using
their framework, the authors identify high-impact play and esti-
mate the game’s outcome uncertainty. Further, Park et al. [32] and
Korotin et al. [20] investigated and assessed the gaze behaviour of
amateur and professional CS:GO players to determine differences
in both player groups. Other work using CS:GO as a research object
investigates the effects of latency on player performance and game
experience. Liu et al. [24, 25], for example, found that CS:GO is
highly sensitive to latency. Previous work aids in understanding
CS:GO players, their interaction with the game, and the game itself.
However, previous work is highly specialized to their respective

1https://github.com/julian1198/csgo_dataset

research question. None of it provides a annotated dataset of actual
game play, which would allow researchers to investigate research
questions in a data-driven manner.

3 DATA COLLECTION AND DATASET
GENERATION

In this section, we describe howwe collected and processed the data
to generate our dataset. We conclude with a descriptive summary
of the data gathered.

3.1 Data Collection Study
CS:GO, out of the box, offers a way to record gameplay sessions:
Point of View (POV) recordings. POV replays are recorded from
the player’s perspective and during the gameplay. The recording
has to be started manually via the in-game console. POV replays
are superior to generic video material, such as Youtube videos, as
they offer additional information about the game state for each
frame recorded. The replays can be played back with the game
itself. However, since a POV replay needs to be recorded while
playing the game, there is no rich source of replay files on the
Internet. Thus, to still be able to utilize the data richness of POV
replays, we conducted a data collection study to gather said replay
files.

3.1.1 Apparatus. We conducted a remote study since players of FPS
games, especially high-skilled ones, heavily rely on their equipment
and a familiar environment to perform at maximum capacity. Thus,
in our study, the participants played CS:GO on their own devices
using their mouse, keyboard, and headset.

3.1.2 Procedure and Tasks. Participants received a detailed e-mail
about the study’s procedure and tasks. After giving informed con-
sent to the data collection, the participants started the study at
any time they liked. The study was conducted online without the
need for supervision by the experimenter. Conducting the data
collection in a laboratory may have increased the experiment’s
internal validity but would have decreased the ecological validity.
Since our goal was to create a dataset of real CS:GO players playing
in an authentic and natural environment, we conducted the data
collection in the wild. In the study, the participants had to complete
a demographic questionnaire stating age, gender, occupation, and
experience with CS:GO. After completing the questionnaire, the
participants were instructed to play one match of CS:GO on the
game map De_Dust2 (one of the most played maps in the game).
While playing, the participants manually recorded their gaming
session via the in-game console. After the match, participants had
to upload their POV replay to a Dropbox folder provided by the
initial e-mail.

3.1.3 Participants. We collected data from 12 participants (all male
and all right-handed). For the recruitment, we used our institution’s
mailing list. Participants were selected independently of age and
gender but were screened for their skill and experience in CS:GO.
CS:GO has an ELO-based ranking system with 19 internal ranks -
19 being the lowest and 1 being the highest possible. To participate,
the participants had to be at least ranked Gold Nova 1 (rank 12)
in CS:GO. Gold Nova 1 corresponds to about a middle skill [23] in
CS:GO’s internal ranking system. Participants were ranked Gold
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Nova 3 (rank 10) (1 participant), Master Guardian (rank 6) (5 par-
ticipants), Distinguished Master Guardian (rank 5) (4 participants)
and Legendary Eagle Master (rank 2) (2 participants). Participants
played CS:GO from 600 hours to 4.000 hours, with an average time
played of 1864.08 hours (SD = 1042.69 hours). The participants’ age
ranged from 18 years to 27 years, with a mean age of 22.42 years (SD
= 2.23 years). All participants were students at our institution and
received one credit for their course of study for their participation
in the data collection.

3.2 Dataset Generation
After gathering the POV replay files, we parsed all files to obtain
(1) dedicated images of the gameplay for each player and gaming
session, (2) additional game state information such as how much
health the player has, whether the player is wearing armor, posi-
tional information about the player’s avatar, which equipment the
player is currently playing with, and if the player has spotted an
enemy or was spotted by an enemy. Additionally, we also gathered
data about the (3) player’s mouse and keyboard input for each frame
parsed.

3.2.1 Image Generation. To obtain individual images from the
recorded replay files, we used Half-Life AdvancedEffects [8] (HLAE).
HLAE is a creator toolkit for CS:GO, which allows content-creators
to extract video material from replay files in multiple video formats.
Additionally, it also provides the possibility to save images from
a replay by parsing them frame-by-frame. We utilized the frame-
by-frame function to generate individual images for each frame
of the gaming session. Researchers using our dataset can export
images in any dimension desired. Generating images for 30 minutes
of CS:GO gameplay, which accounts for about 115 200 frames, took
approximately 12 hours. This means, overall, the image generation
of the gathered data took roughly 288 hours. In this time, we gener-
ated 2 764 800 unique images of CS:GO gameplay. Figure 1 shows
three example images of gameplay generated from the gathered
replay files. For easy handling and fast prototyping, we generated
two down- and grey-scaled versions of the extracted images. Using
Python and the Python library NumPy, we created two Pickles:
One saving all images in 60 × 34 pixel and the other containing the
images in 30 × 17 pixel.

3.2.2 Game State Data Generation. We used demofile [33] to ex-
tract textual game state information from the the replays. The tool
works similarly to HLAE in processing replay files frame-by-frame.
Using a listing-framework demofile reacts to predefined events,
which then can be logged in a text file. Utilizing the tool, we ex-
tracted the following game state information of the gathered replay
files: (1) tickCount - this corresponds to the frame count of the
gathered images. Via tickCount it is possible to match textual game
state information with the accompanying image of the dataset. (2)
teamNumber, which shows the team affiliation (unassigned, terrorist
or counter-terrorist). (3) armor states a player’s current amount of
armor. Players start with 0 armor which can be increased through
special in-game items to up to 100. (4) health states how much
health the player has left (0 - 100). Players die if their health is
reduced to 0. (5) placeName indicates where in the game world
the player currently is. (6) hasC4 states if the player possesses the

bomb needed to detonate the objective when playing as terrorist.
(7) hasDefuser states if the player possesses a special game item
that accelerates defusing a bomb. (8) isScoped indicates if the player
currently uses a weapon with a scope. (9) isSpotted states if the
player was spotted by an enemy, analogously (10) hasSpotted states
whether the player has spotted an enemy. (11) weapon contains the
currently used weapon.

3.2.3 Input Data Generation. To obtain the keyboard and mouse
input for each frame, we, again, used demofile. Using the same
event-listing approach, we extracted the following information
about the users’ input: (1) tickCount - this states to which frame
this input data belongs. Using tickCount images and input data
can be synchronized. Additionally, we recorded (2)buttons which
contains a string of pressed buttons at this frame. And, lastly, we
extracted how the mouse’s pixel position changed in regards to
the previous frame in X- and Y-coordinates(3) mouseDeltaX and (4)
mouseDeltaY.

4 EXAMPLE USE CASES OF THE PRESENTED
DATASET

In the following, we showcase two use cases of our dataset. The
first example uses a similar approach to latency compensation
as previous work [15, 35] and aims to predict the users’ mouse
movement using an ANN. The second example demonstrates a
novel approach to frame-based prediction. This approach predicts
the next frame based on a series of frames instead of predicting the
users’ input (as in the former example). Both approaches could be
used to reduce processing time, for example, in cloud gaming. In
both use cases we used TensorFlow [1] for developing the ANNs
and Optuna [2] for hyperparameter optimization. Both developed
ANNs were trained and evaluated using Google’s Colab Pro + [14]
which offers 52GB RAM and 2 Nvida P100 each with 16GB vRAM.

4.1 Mouse Movement Prediction
The first use case, the mouse movement prediction, is trained on the
input part of our dataset. The goal in the use case is to predict the
mouse delta of a future frame based on a fixed amount of previous
consecutive frames. For this goal, we used a classical feed-forward
ANN. Since it was initially unknown how many frames are optimal
as prediction baseline, we defined it as a parameter for Optuna
to tune. The optimization by Optuna revealed that a prediction
baseline of 6 frames yields the best possible results. In conclusion,
we defined that the ANN uses six frames as input to predict the
mouse delta of every seventh frame as output. Further optimizing
with Optuna showed that four hidden layers, with 48 units (1),
118 units (2), 196 units (3), and respectively 1 unit (4), are optimal.
The optimization framework also suggested the use of Adam [19]
as optimizer, a batch size of 355, the mean squared error (MSE)
between the actual value and predicted output as loss function,
and the use of ReLu [12] as activation function. The learning rate
was adaptively adjusted using callback functions after each epoch.
We used a 80/10/10 train/test/validate split to train the ANN on
the textual data of our dataset. One epoch took about six seconds.
Overall we trained the ANN for 3 000 epochs.

After training, we tested the prediction on the previously unseen
validation set. The validation showed that the ANN achieved an
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Figure 1: Shows three examples of images extracted from the gathered replay files ofCounter-Strike: Global Offensive gameplay.
The left shows a player scooping with a weapon to secure a passage, the middle shows a player running, and the right shows
a player placing a bomb to detonate the objective.

error rate (MSE) of 7.88 pixel for mouseDeltaX and 1.93 pixel for
mouseDeltaY. Thus, the ANN predicted the next frame’s mouse
position based on the previous six consecutive frames within a
small error range.

4.2 Next-Frame Prediction
In the second use case, an ANN is trained to predict a frame in
the future. Due to RAM limitations, we used the down-scaled 60 ×
34 pixel Pickle in this example. Additionally, we reduced the amount
of data feed in training and only used four games (instead of all 12
available) to limit RAM usage. Overall, this example was trained on
316 757 gameplay images. After optimization Optuna suggested a
prediction baseline of 2 frames, a network structure with six hidden
layers (layer 1: 568 units, layer 2: 731 units, layer 3: 329 units, layer
4: 1703 units, layer 5: 2550 units, and layer 6: 2040 units), and a
batch size of 87. As activation function Optuna recommended ReLu
for all hidden layers and a linear activation for the output layer. We
used the MSE between the frame’s actual pixel value and the pixel
value of the predicted frame as loss function. The learning rate
was adaptively adjusted using callback functions after each epoch.
To prevent overfitting, we implemented a dropout [38] function
with a dropout value of 0.2. The ANN was trained on 100 % of the
previously defined data for 3 500 epochs, with each epoch taking
about 24 s to train. As test set, we used the 60× 34 pixel data of two
gaming sessions not included in the training set (game 6 and game
7).

After training, we tested our model on the previously unseen
test set. The test showed that the ANN achieved a MSE accuracy
of 0.095. Pixel values in the down-scaled 60 × 34 pixel version of
our dataset range from 0 to 1. Thus, a MSE of 0.095 corresponds to
less than 1% of error. Furthermore, our example shows that using
frame data allowed the ANN to predict future frames with an error
less than 1%. Figure 2 shows two examples of predicted frames
generated by the model (right) alongside the original image (left).

5 DISCUSSION
Our two use cases exemplify the use of our dataset for different sce-
narios. However, both examples offer a large number of directions
for improvement. Thus, this section first discusses the dataset itself
and how it could be further refined, expanded, and improved. Next,
we discuss the two presented examples and possible improvements.
Built on the use cases, we discuss implications and further uses of
our dataset.

Figure 2: Shows two example images predicted by the next-
frame prediction neural network (right), alongside the orig-
inal image (left). The ANN generated the image based on
two previous consecutive frames. The left side shows the ac-
tual image, which should be rendered after the two consec-
utive images used for prediction. The right shows the pre-
diction. Although the prediction is blurry, architectural fea-
tures such as walls, doors, and crucial game elements, such
as the weapon and the mini-map, are recognizable.

5.1 Dataset
The dataset contains data from 12 high-skilled players playing
CS:GO. However, we only recorded one particular game map. While
some game elements are transferable, such as general player move-
ment and weapon handling, some are map-specific. Thus, for ex-
ample, some gameplay tactics are only applicable on one particular
map and not on another map. However, considering that we pro-
vide our data via GitHub2 and choose to use only open-source and
easy-to-handle tools to generate the dataset, the presented dataset
can be quickly and practical infinitely expanded, not only by us
but by everyone interested. Our work may represent the starting
point of a community-wide, large-scale data collection that could
accelerate data-driven gaming research.

2https://github.com/julian1198/csgo_dataset
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5.2 Use Cases
The mouse prediction example could be improved using recurrent
neural networks (RNN). RNNs are a class of ANNs that can encode
temporal information. Contrary to the classical feed-forward net-
work used in the first use case, data is not only processed in one
direction (input to output) but can be processed in both directions.
This allows the RNN to model temporal dynamic behavior. RNNs
have been successfully used in speech recognition [29], stock price
prediction [36], and to detect emotions in conversations [27]. The
presented feed-forward network does not utilize temporal infor-
mation in its current form. However, it bases the prediction solely
on the order in which the data is fed to the network. Using RNNs
for the mouse prediction and thus, processing exact temporal in-
formation may improve the model’s accuracy. Furthermore, the
prediction could be improved by further fine-tuning hyperparam-
eters. We used Optuna for hyperparameter tuning, which uses a
sophisticated grid-search approach for optimization. Nevertheless,
as in any deep learning-based approach, it is possible that our pre-
sented model did not optimize for a global but a local minimum.
Using a more advanced optimizer instead of Adam, for example,
NAdam, which employs Nesterov momentum in the training [7],
could also enhance the mouse movement prediction. Similarly, the
ANN for predicting the next frame could also be improved. We use
a basic network architecture based on a Dense Neural Network
(DNN) in the presented model. One way to improve the prediction
is to use GANs. In a GAN architecture, two ANNs compete against
each other. The gain of one network is coupled with the loss of the
other network (zero-sum game) [13]. GANs generate new data from
a given dataset through this interplay and have already been suc-
cessfully used in creating artificial handwritten numbers [37] and
in creating new game worlds in the computer game Doom [10, 11].
Using a GAN architecture could also increase the accuracy of the
predicted frames in our presented use case.

5.3 Implication and Future Work
By using the presented dataset, researchers can now utilize deep
learning in the context of CS:GO. We showcased two preliminary
examples of deep learning-based latency compensation techniques.
Researchers can build on our work to either refine our work or
assemble novel approaches to reduce the adverse effects of latency
in video games.

However, the possible applications of the presented dataset are
far beyond latency compensation. Researchers, for example, can
use it to investigate how high-skilled players of CS:GO behave in
certain situations. Particularly high-pressure situations frequently
occur in competitive multiplayer games such as CS:GO [5]. Often
the outcome of a game round is determined by one player who
has to stand their ground against a superior force, for example,
more than one opponent or even the whole opposing team (1vs5
in CS:GO). Winning single-handed against such a superior force
is called Clutch. By reviewing the demo files provided with our
data, researchers can determine Clutch situation, analyze them
accordingly, and potentially investigate what circumstances led
to it and how players behaved. Ultimately, this could deepen our
knowledge about games, gamers, and their interaction with the
game.

Similarly, as we did in our examples, researchers can use the pre-
sented dataset to prototype novel deep learning methods for games.
These methods do not have to be focused on latency compensa-
tion as ours did but can be used for a broad range of applications.
Researchers, for example, could utilize the visual material for a
classical task in computer vision, such as object detection or object
recognition. One may train, for instance, an ANN to detect or antici-
pate enemies. Training a model on a large enough dataset may allow
the model to anticipate where enemies are about to appear based on
previously learned behaviors. In combination with a good software
toolkit, this ANN could, for example, be used to train novice gamers
- helping them to increase game awareness and to improve their
gaming skills overall [42]. While the presented dataset is still small,
the potential future applications of it are diverse and limited only
by the creativity and endeavors of the researchers.

5.4 Conclusion
In this work, we present a novel Counter-Strike:Global Offensive
dataset. We provide three different versions of the visual material.
Additionally, the presented dataset is highly annotated, providing
game and input information. We also presented two preliminary
examples of the use of our dataset. Finally, in our discussion, we
explore our dataset’s possible future expansion and application.
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