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ABSTRACT
Using biosignals through electromyography (EMG) and rendering
them as feedback for hands-free interaction finally migrates to en-
gaging virtual reality (VR) experiences for health and fitness-related
applications. Previous work proposes various body locations as in-
put sources and different output modalities for creating effective
biofeedback loops. However, it is currently unknownwhichmuscles
and sensory modalities can provide optimal real-time interaction
regarding the performance and perceived workload of the users. In
two VR studies (N=18 and N=40) based on a Fitts’ law target selec-
tion task, we explored sensor placement at different body locations
and investigate auditory, tactile, and visual feedback modalities.
Objective and subjective results indicate that input performance
can be improved by presenting muscle tension as simultaneous
tactile and visual feedback. We contribute with recommendations
for registration of isometric muscle contraction at different body
locations and conclude that reproducing physiological feedback
throughmultimodal channels can assist users interacting with EMG
devices.
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1 INTRODUCTION
Assessing physiological signals of the human body is important for
a widespread range of disciplines. Particularly assessing the muscle
activity using electromyography (EMG) is indispensable for a wide
range of medical, assistive, and interactive applications [2, 7, 65,
105, 120]. For interactions with computing systems, electrodes of
an EMG device can register the physiological activity of muscles
at different locations on the human body allowing continuous as
well as a discrete input [58]. Thus, EMG can be used to recognize
limb movements [92], gestures [123], and trigger events for e.g.,
hands-free interaction [79]. However, as muscles can have varying
functions in the human body their corresponding location while
using EMG cannot only affect the signal [69] but also the interaction
performance [90] or comfort during interaction [74].

For understanding and improving muscle control as interac-
tion technique it is important to consider the physiological dif-
ference between muscle tension caused by moving a limb due to
a shortening or lengthening of the muscle (isotonic contraction)
and applying muscle force without changing its length (isometric
contraction) [76]. While movement-based muscle contractions are
easy and quick for the user to perform (clicking a button, for in-
stance, is basically the result of an isotonic movement), isometric
muscle contractions must be consciously activated without any
movements. Thus, they allow a new layer of motionless, subtle [14]
and unobtrusive (social) interactions [71]. They are relevant in re-
habilitation and sports as they can be applied within pain-free joint
angles resulting in analgesic effects [78]. Isometric contractions
in EMG-based systems are also desired to prevent unintentional
motion-based input or when movements are even impossible for
mechanical control of electric wheelchairs [72], exoskeletons [64]
and remote robotic systems [5, 39, 125].

One possibility to gain increased control and more awareness
during interactions with physiological functions of the own body
is displaying the biosignal back to the user. Closing the so-called
biofeedback loop facilitates the phenomenon of neuroplasticity [34]
and increases the body awareness often causing changes to one’s
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own behavior, thoughts, and even body functions, which are typi-
cally not consciously perceived such as brainwaves, skin conduc-
tance, heart rate, or gastric activity [51, 57, 113, 121]. In particular,
closing the biofeedback loop using EMG sensors is helpful for a
number of use cases where (isometric) muscle control can support
motor functions and information about the physiological signal of
the muscle activity is required to gain control over it [13, 63, 85].
This approach can even support the restoration of neural pathways
when only the intention to move a limb is trackable e.g., after a
stroke [25, 101].

Previous work discussed how the biofeedback loop can efficiently
be closed using different modalities [46]. Generally, vision, audio,
and haptics are perceived faster compared to senses like tempera-
ture or olfaction [37, 50]. However, researchers tend to prefer the
use of multi-modal biofeedback – the simultaneous rendering of the
physiological signal using multiple perceptual channels [27, 46, 88].
One of the most versatile approaches to enable multi-modal in-
teraction is using augmented reality (AR) or virtual reality (VR).
As the technologies provide high levels of immersion, motivation,
and engagement [2, 67, 94], the usage of AR and VR is subject of a
number of use cases in many EMG-related disciplines such as in
fitness and sports [27], for hands-free interaction [79], health [60],
and rehabilitation [75, 80, 110].

This paper contributes to the human-computer interaction (HCI)
by reporting on two VR studies based on a Fitt’s law task inves-
tigating how muscle-based interactions, as well as multi-modal
biofeedback with EMG devices, can be improved. We found that the
input performance does not significantly differ among isometric-
controlled muscle contractions, however, that the performance
can be improved through combined visual and tactile biofeedback.
Qualitative analyses provide additional insights on the participants’
usage, impressions, and opinions on EMG in interactive systems.
We discuss implications and recommendations for researchers, bio-
engineers, and developers seeking to enable biofeedback-assisted
interaction with EMG.

2 RELATEDWORK
Measuring EMG signals, using those for computational interactions,
and rendering EMG as biofeedback is subject in multiple disciplines
of the related work. In this section, we built upon relevant research
in the context of registering and using muscle activity as well as ren-
dering that activity as biofeedback considering different modalities
in VR or AR.

2.1 Electromyography (EMG)
EMG deals with the detection, analysis, and utilization of electrical
signals emitted from the skeletal muscles of the human body. A
small electrical current is produced by the exchange of ions across
those muscle membranes, gets amplified, and recorded using elec-
trodes [45]. EMG is used for medical application and diagnostics of
muscle-related disorders or diseases [105, 116], rehabilitation [7],
and for the control of prostheses [9]. While using surface elec-
tromyography (sEMG) electrical signals are measured with the
help of electrodes attached to the skin surface, EMG can also refer
to invasive needle electrodes where the electrical current is mea-
sured within the muscle. For consistency with related work and

in the following, however, we refer to sEMG when EMG term is
used. Due to the noninvasive usage of EMG, the sensor technology
is also in focus of non-medical research. Engineers and developers
of biomedical applications use the EMG signal to control hardware
or software [69]. Common standards for assessing signals with the
sensor technology have been proposed by the European Recom-
mendations for Surface Electromyography (SENIAM) [35].

Related issues affecting the EMG signal are individual tissue
properties, physiological cross-talk in-between two muscles, and
potential distance changes between muscle and electrode [20, 69].
Factors of interest are EMG signals based on movements or volun-
tary tension. When a muscle moves a limb joint along a distance the
muscle changes its form because of the applied tension inducing
a so-called isotonic contraction [38, 76]. Isotonic contractions are
suitable for detecting movements, e.g., gestures [1, 47, 95] or loco-
motion [114], and can be combined with other sensors for improved
recognition accuracy [123]. In contrast to isotonic contractions, iso-
metric contractions generate and maintain constant tension without
changing the length of the muscle and are frequently used in fitness
training to maintain posture [87]. So-called maximum voluntary
isometric contractionss (MVICs) are recommended when inves-
tigators desire no corresponding movements with cross-talking
muscles, employ multiple muscle positions [16], and aim to iso-
late the signal of actual muscle tension from artifacts caused by
movements [87, 95, 107]. Isometric muscle contractions are suitable
for people with an injury or medical condition that restricts move-
ment [36] and can increase muscle stability, for example, the ability
to hold weight over longer periods of time [55] or address muscle
stiffness and reduce blood pressure [56, 70]. After a fracture and
when the arm is being fixated to prevent any movements for further
injuries, isometric contractions based on biosignal-supported feed-
back with EMG can help to prevent muscle loss without holding
weights destabilizing the fracture [104]. However, the assessment
and conscious application of isometric contractions can be difficult
because no displacement occurs except within the muscle itself and
at a microscopic level [115]. Thus, isometric muscle contractions are
often used together with biofeedback to visualize the EMG signal
for improved awareness and body control [13, 42, 63].

2.2 Biofeedback with EMG
Rendering a biological signal from a physiological activity to its
user in real-time is commonly referred to the term biofeedback.
This allows the user to influence that signal. Biofeedback is used to
increase awareness and consciousness on that physiological func-
tion [28]. Using biofeedback with EMG signals mainly emerged
from the field of medical and clinical rehabilitation [7]. Actively
monitoring one’s own physical activity of the muscles can be sup-
portive to react, adapt, or understand the own physiological-based
parameters such as behavior, movements, and postures [82]. The
concept behind multi-modal biofeedback in rehabilitation is facili-
tating neuroplasticity necessary to regain e.g., lost motoric abilities
or disorders [100]. EMG biofeedback can, for example, be used to
facilitate or inhibit muscle contraction and is considered a suit-
able treatment for a wide range of musculoskeletal disorders [122],
neuromotor [40] and stroke rehabilitation [106]. Yoo et al. [120],
for example, treat a neuromuscular imbalance between the triceps
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and biceps using EMG and visual biofeedback in VR with children
with spastic cerebral palsy. Typically, biofeedback is presented vi-
sually, but the signal can also be reflected using other perceptual
channels [10, 12, 46, 97]. In particular, rendering biofeedback using
multi-modal systems such as in VR or AR has been extensively
investigated by previous work [61, 80, 94].

Biofeedback for active control in VR applications further opened
the field of motor imagery for e.g., post-stroke rehabilitation [41]
or even for direct limb control in AR for amputees [80]. Beside
the advantages over traditional treatments in clinical practice [83],
biofeedback in VR has shown potential to improve sports, train-
ing, and fitness efficiency [15, 21, 112]. As currently mentioned,
biofeedback techniques are predominantly based on vision [102],
but there are also techniques rendering physiological signals using
tactile [12, 46, 97] or auditory [46, 111, 121] feedback, which all can
be provided in AR or VR. According to Gazzoni and Cerone [27] cur-
rent biofeedback techniques are simplistic and not intuitive limiting
the clinical effectiveness and suggest to use such a multi-modal
approach. In a study by Karolus et al. [46], the authors investigate
the effect of visual and auditory biofeedback for physical training
exercises. However, based on their findings, the authors conclude
that “multi-modal feedback systems should provide a choice for
the user to prevent sensory overload” [46]. While it appears that
addressing two senses simultaneously can lead to an increased
cognitive processing [86, 108, 119], there are also cognitive mod-
els predicting that combining too many external influences can
increase the likelihood of information overload [6, 44, 117].

2.3 EMG in HCI and AR/VR
Research in HCI explores the feasibility of muscle-computer inter-
faces as interaction methodology between humans and devices [4].
While early approaches showed an interest in decoding human-
muscular activity rather than relying on physical device actua-
tion [95], recent research envisions systems closing the loop be-
tween physiological input and output. Such interactive systems
can not only read but also directly influence the user’s body over
physiological sensors [62]. Gesture recognition [95] or translating
the intensity of muscle activity to select letters while typing [52]
are additional use cases of EMG devices in HCI research. EMG has
also been explored providing off-desktop mobile or wearable inter-
action systems [53] and as interactive communication tool between
persons [96]. Also the daily use of EMG devices is an issue in the
domain. For example, Constanza et al. [17, 18] use EMG for mo-
bile interfaces to realize unobtrusive and intimate communication
based on isometric muscle contractions allowing subtle andminimal
interactions with connected devices to stay unnoticed towards non-
informed observers and thereby integrate EMG by being discrete
enough for an application in public space and motion-less gestures.
There is even research in that field facilitating the EMG biosignal
for social interactions and interpersonal communication [71].

Research has reported different effects of EMG sensor placement
at different body locations for interaction [16, 58]. For example,
in terms of adaptive gameplay participants in a study by Nacke
et al. [74] report headaches when EMG sensors were placed on
forehead to imitate joystick input. The authors also refer to pos-
itive effects of isotonic contractions from physiological sensors

when EMG is being placed at the leg, evaluating them as conve-
nient and fun to use, leading to high subjective ratings of the game
mechanics [74]. Also related to games is when EMG is connected
to game mechanics to support rehabilitation and motivation. For
example, Ma et al. [65] present an EMG VR system that aids muscle
rehabilitation through a balloon shooting game, which uses the
actions of rotation and grasping of the hand as input and deliv-
ers visual feedback. Consequently, Garcia-Hernandez et al. [26]
concluded that gamified EMG and VR therapy can lead to engage-
ment and motivation. Supporting muscle training in multi-modal
VR/AR environments can also improve learning, for example, how
to use a new prosthetic [73, 75] or even a virtual hand [54, 81].
To interact with EMG in VR related work mostly used threshold-
based action triggers (ca. 20 - 50% of the maximal signal strength)
to translate the continuous signal into discrete events for target
selection or event triggering [8, 59, 90, 90]. For target pointing or
aiming researchers use eye gaze [79, 93], upper and lower arm
rotation [32, 90] (c.f. Thalmic Labs’ discontinued Myo Gesture Con-
trol armband), hand rotation [65, 79], and head rotation [65, 79]
as input, whereas Hansen et al. [31] showed that pointing with an
head-mounted display (HMD), used for many use cases in hands-
free interaction [118], works better concerning the information
throughput [66] than gaze pointing.

2.4 Summary
EMG at different muscles is used in a wide number of health-related
and even interactive applications [11, 41, 48, 60, 94, 110]. Single-
and multi-modal biofeedback can be presented to the user to gain
control over one’s own muscle contractions [7, 15, 21, 28, 46, 112]
and within the VR for immersion and engagement [26, 54, 65, 73,
75, 81]. However, it is currently unclear, which muscles provide op-
timal throughput and workload. Furthermore, it is unknown which
biofeedback modalities [46, 97, 111] can be used for optimal interac-
tion with EMG devices. Therefore, we conducted two experimental
studies to investigate the effects of body location and modalities
on the users’ interaction performance.

3 STUDY 1: BODY LOCATIONS AND EMG
INTERACTION

Previous work uses EMG for the registration of muscle activity as
an input method for VR. However, it is still unclear which body ar-
eas are well-suited for interaction with such systems. As humans do
not activate and use their muscles in the same way, we hypothesize
that there are differences in the users’ input performance between
different areas of the human body. Therefore, we conducted a VR
user study using a within-subject design with the independent
variable Body Location. Based on a standardized Fitts’ law tar-
get selection task using EMG and an HMD as the pointing device
(cf. ISO 9241-411 [43, 66]) as well as subjective assessments, we
measured performance and workload.

3.1 Body Locations
Research investigating EMG as muscle input uses the upper front
arm (Biceps bracchii) [2, 102], the upper back arm (Triceps brachii
caput laterale) [2], the temple (Temporalis anterior) [52, 109], the
inner calf (Gastrocnemius) [74], or forearm (Flexor carpi radialis) [2,



CHI ’23, April 23–28, 2023, Hamburg, Germany Sehrt et. al.

VR Controller
(Hand)

Biceps brachii
(Upper Front Arm)

Triceps brachii cap.
lat. (Upper Back Arm)

Gastrocnemius cap.
med. (Inner Calf)

Temporalis anterior
(Temple)

Flexor carpi radialis
(Forearm)
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Figure 1: The six conditions with corresponding muscles
(blue) and body locations (1-6) for EMG sensor placement
used in the first user study.

95]. During system development we found that EMG signals from
the shoulder muscles (Infraspinatus) [124] are being compromised
by the head rotation with the HMD and did not include the location.
As control condition we included the VR Controller (Hand) of the
headset.

3.2 Apparatus
We created a virtual 3D environment for the Fitts’ Law task using
Unity Engine (Version 2019.4.1f) running on a PC with AMD Ryzen
5900X, GeForce RTX 3070, and 16 GB RAM. The virtual scene
was kept as simple as possible and contained a panel in front of
the participant for calibration instructions and targets. An HTC
Vive Pro with 90 fps was used as HMD and tracked using four
lighthouse boxes for high accuracy. The head orientation of the
headset was used to control the camera view ray casting towards
the center of the view and indicated by a small red dot. In the
muscle controlled conditions, the EMG signal was used for action
triggering during target selection. In the VR controller condition,
action triggering was performed using the index finger on the
trigger button of a regular HTC Vive Controller. A Biosignalplux
4-Channel Hub1 with EMG sensors and Kendall H124SG electrodes
was used to assess muscle activity. Sampling rate of EMG frequency
measurement was set to 1000 Hz in 16-Bit resolution according to
the datasheet. The integrated low-noise high-speed operational
amplifiers performed bandpass filtering and amplification on the
base of bitalino technology [30]. Signal strength above 20% was
accepted as trigger-threshold. To ensure that muscle tension was
released between target hitting edge-detection was implemented.
To prevent constant triggering, the signal strength had to drop
below 10% to release the EMG trigger again. Controlled variables in
the Unity scene were target amplitude (A = 1.4, 1.8, 2.0 & 2.2 meters)
and target width (W = 0.1, 0.2, 0.3, 0.6 & 1.1 meters), resulting
in the indices of difficulty (IDs) 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, and 4.5.

1https://www.pluxbiosignals.com/collections/research-kits/products/copy-of-
explorer

Targets were activated reciprocally clockwise, beginning with the
uppermost target (at 12 o’clock) and were hidden until activated.

3.3 Measures
As recommended by Biosignalplux and in line with previous re-
search on EMG for event detection, a Taeger-Kaiser energy operator
was applied for EMG signal processing and it was rectified to im-
prove onset detection [103]. The mean of all EMG values within
one received package was calculated to provide a reasonable level
of signal smoothing. For determining the throughput performance,
we recorded target selection time, the corresponding IDs, target po-
sition, and actual hit point coordinates. In addition, we recorded the
timestamps of the experiment. For perceived workload, participants
filled out the Raw NASA Taskload Index (RTLX) as widely used tool
in HCI for workload assessments [33] with a digital questionnaire
in VR. This avoids putting off the headset and potential inconsisten-
cies of placement of body posture and hardware [98]. Qualitative
feedback was obtained by a post-VR interview and noted by the
experimenter.

3.4 Procedure
After signing the informed consent, the participants were asked
about their demographics and introduced to the goals of the study
as well as the functionality of the EMG and VR system. Participants
were brought in a comfortable seated position with elbows and
knees were brought in an approximate 90° angle. The dominant
arm and leg were identified as stated by the participant and all
conditions were tested on this body half. To ensure correct sensor
placement, the experimenters were provided with a scheme of hu-
man anatomical landmarks. The skin at each location was prepared
with an alcoholic pad, shaving the hair with a disposable razor, if
necessary. Two electrodes were placed at a distance of 1 cm on
the muscle stomach for each condition repetitively and a reference
electrode consistently to the elbow joint bone. The experimenter
put on the HMD for the participant. Lens distance was adjusted
according to the participants’ individual preference. Participants
were orally instructed how to use their muscle tension as trigger
and that they should “select the targets as fast as possible”. Before
calibration, participants were free to ask questions.

During calibration process, a text on a virtual panel was pre-
sented: “Please tense your muscle with effort...”. The participant’s
biosignal was rendered for the experimenter to ensure that the
desired amplitude has been registered. In cases where participants
were not able to activate their muscle correctly, they were guided
by the experimenter, who touched the muscle section with the
fingertips. Maximum muscle strength was then derived from at
least three intensive but still comfortable muscle tension phases as
the individual and muscle-specific trigger threshold. Each muscle
of the recent condition was separately calibrated. In cases where
the experimenter had issues with the correct sensor placement on
the muscle stomach, we brought the participants’ limb into zero
position as recommended by SENIAM [35] except for the temple.
Afterward, we brought the participants back into a seated position.

Before starting, the participant was explicitly instructed to not
move any limbs to ensure isometric muscle activation and to “select
the targets as fast as possible”. Then, the participant performed the

https://www.pluxbiosignals.com/collections/research-kits/products/copy-of-explorer
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Figure 2: Objective performance measures of the first study. The bar chart in 2(a) shows the average throughput results from
the Fitts’ law task for each muscle location. The regression slopes in 2(b) show the target selection time of each muscle as a
function of the effective index of difficulty (IDe). All error bars show 95% confidence intervals (CI95).

Fitts’ law task with pseudo-randomized IDs and filled the RTLX
on the virtual panel. After each condition, a new set of disposable
electrodes was attached to the subsequent body locations in counter-
balanced order according to the randomization by a Latin square.
During the procedure, the experimenters noted any interesting
comments or suggestions from participants. After finalizing the last
condition, participants were debriefed and could express individual
observations about their experience.

3.5 Participants
Eighteen students (5 female, 13male) from computer science courses
were invited via social networks, mailing lists, and word of mouth
to participate in the study. Their mean age was 25.888 (𝑆𝐷 = 4.600)
ranging from 21 to 41. All participants were informed that they can
withdraw from the experiment at any point without penalty. No
volunteers were excluded from the study. No participant desired to
quit or pause the study. All participants were student volunteers in
the field of computer science or mechanical engineering and were
rewarded with credit points for their lecture. The study received
ethical clearance according to the regulations and hygiene proto-
cols for user studies during the COVID-19 pandemic as required by
our institution.

3.6 Data Analysis
The objective data of two participants could not be taken into ac-
count due to broken data stream recordings during the experimental
trial. As their interaction was not affected, their subjective feed-
back has been taken into account. The effective throughput (TPe)
was calculated using the target selection model for 2D tasks as
proposed by MacKenzie and Buxton [66]. Their model is part of
ISO 9241-411 [43] for the evaluation of physical input devices and
provides an improved link to information theory, better fits, and
IDs that cannot be negative. With A as amplitude (distance between
two targets) and𝑊𝑒 as the effective target width calculated by the

distribution of targets over a sequence of trials. To calculate the
effective throughput (TPe) we used the effective IDe and the mean
time (MT) as shown in Equation 1:

𝐼𝐷𝑒 = 𝑙𝑜𝑔2

(
𝐴

𝑊𝑒
+ 1

)
, 𝑇𝑃𝑒 =

𝐼𝐷𝑒

𝑀𝑇
(1)

3.7 Quantitative Results
3.7.1 Throughput. Shapiro-Wilk’s test was performed to detect
any violations of normality of the objective throughput data of
the target selection task, which could not be found (all conditions
with 𝑝 ≥ .529). Thus, we performed a parametric one-way repeated
measures analysis of variance (RM-ANOVA) to compare the effect
of Body Location on the throughput. Effect sizes were labelled fol-
lowing recommendations by Fields [23]. The analysis revealed a sta-
tistically significant effect, 𝐹 (5, 75) = 11.283, 𝑝 < .001, 𝜂2𝑝 = 0.429
(large). Pairwise comparisons using Tukey’s HSD test (see Table 1)
showed that the mean values between VR Controller and Biceps
brachii, VR Controller and Triceps cap. lat., VR Controller and Gas-
trocnemius cap. med, Triceps brachii cap. lat. and Temporalis anterior,
as well as between Gastrocnemius cap. med. and Temporalis ante-
rior, were significantly different. Thus, both Triceps brachii cap. lat.
and Gastrocnemius cap. med. had a significantly lower throughput
than the VR Controller and Temporalis anterior. Moreover, the VR
Controller was significantly faster than the Biceps brachii. Any sig-
nificant differences between Flexor carpi radialis and the other Body
Locations or between other condition pairs could not be found
(all with 𝑝 ≥ .065). No gender-related effects or interactions were
found (all 𝑝 > .05). All means and CI95 are shown in Figure 2(a).

3.7.2 Mean Target Selection Time. We further analyzed the log-
transformed mean target selection time on participant level and
included the ID as co-variate in a repeated measures analysis of
covariance (RM-ANCOVA) to understand if the difficulty during
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Table 1: P-values of pairwise comparisons between the tested muscle locations for throughput (TP) and workload (RTLX) scores.

VR Controller
(Hand)

Biceps brachii
(Upper Front Arm)

Triceps brachii
(Upper Back Arm)

Gastrocnemius cap.
med. (Inner Calf)

Temporalis
anterior (Temple)

TP RTLX TP RTLX TP RTLX TP RTLX TP RTLX

Biceps brachii (Upper Front Arm) .007* .053
Triceps brachii (Upper Back Arm) .001* .183 .990 1.000
Gastrocnemius cap. med. (Inner Calf) .001* 1.000 .995 1.000 1.000 1.000
Temporalis anterior (Temple) .862 1.000 .150 .092 .034* .024* .042 .657
Flexor carpi radialis (Forearm) .065 1.000 .969 1.000 .730 1.000 .780 1.000 .558 .229

the target selection task affected the performance of the Body Lo-
cation. As Mauchly’s test showed a violation of the assumption of
sphericity (𝑊 = 0.751,𝑝 < .001), we used Huynd-Feldt correction
(𝜖 = 0.892) to adjust the degrees of freedoms. There were statisti-
cally significant effects of Body Location, 𝐹 (6.00, 103.00) = 51.548,
𝑝 < .001, 𝜂2𝑝 = 0.750 (large) and ID, 𝐹 (4.69, 482.65) = 33.050,
𝑝 < .001, 𝜂2𝑝 = 0.243 (large), however, there was no interaction
effect , 𝐹 (28.12, 482.65) = 0.596, 𝑝 = 0.952, 𝜂2𝑝 = 0.034 (medium),
indicating that the throughput of the EMG device is independent
from the difficulty during target selection. The regression fits for
the mean target selection time of the individual Body Locations
based on the IDe and the resulting slope parameters (constants 𝑎
and 𝑏 from the Fitts’ task) can be found in Figure 2(b).

3.7.3 Subjective Workload. Subjectively perceived workload was
assessed using the RTLX questionnaire. Shapiro-Wilk’s tests on
the scores could not detect violations of normality (all conditions
with 𝑝 ≥ .245). A one-way RM-ANOVA with Body Location as
factor revealed a statistically significant effect, 𝐹 (5, 80) = 4.449,
𝑝 = 0.001, 𝜂2𝑝 = 0.218 (large) on the workload scale. Bonferroni-
corrected pairwise comparisons revealed a significant difference
between Triceps brachii cap. lat. and Temporalis anterior (𝑝 = 0.024),
on the performance measure and VR Controller and Biceps brachii
(𝑝 = 0.019), for perceived effort. An analysis of the subscale scores
revealed no effect onmental demand, 𝐹 (2.9, 46.32) = 0.65, 𝑝 = 0.582,
𝜂2𝑝 = 0.039 (medium). However, there were significant effects on
physical demand, 𝐹 (5, 80) = 4.482, 𝑝 < 0.001, 𝜂2𝑝 = 0.219 (large),
temporal demand, 𝐹 (3.49, 55.84) = 2.812, 𝑝 = 0.04, 𝜂2𝑝 = 0.149
(medium), performance, 𝐹 (5, 80) = 3.052, 𝑝 = .014, 𝜂2𝑝 = 0.160
(large), effort, 𝐹 (5, 80) = 3.052, 𝑝 = .014, 𝜂2𝑝 = 0.170 (medium),
and frustration, 𝐹 (5, 80) = 3.052, 𝑝 = .014, 𝜂2𝑝 = 0.161 (medium).
Bonferroni-corrected pairwise comparisons, however, only revealed
significant differences between VR Controller and Triceps brachii
cap. lat. (𝑝 = 0.015), on the performance measure and VR Controller
and Biceps brachii (𝑝 = 0.019), for perceived effort. All means and
CI95 are shown in Figure 3.

3.8 Qualitative Results
After the experiment, we asked participants which body location
(without VR controller) they finally prefer based on overall com-
fort. The post experimental semi-structure interview feedback was
transcribed verbatim and analyzed by two of the researchers.

Twelve participants (63.2%) stated they prefer the EMG sensor
at the Temporalis anterior (temple), four participants (21.053%) pre-
ferred the Gastrocnemius cap. med. (calf), and three (15.8%) the
Flexor carpi radialis (Forearm). One of the comments revealed that
the participants probably did not activate their muscle using iso-
metric movement despite our instructions: “temple is only good to
control because you can press the jaw to activate the temple mus-
cle” (P2). Similarly, P4 just learned that “temple muscle activation
needs movement of the eyebrow and forehead if you do not want
to involve the pressing of the jaw”. The participant also complained
that his eyebrow movement was irritated by the headset. Without
not allowing to move any limb the instructions definitely prevented
non-isometric activation of the arms and legs: “If you would have
been allowed to lift the arm for biceps, triceps or press towards the
table these would the same way be easy to address” (P2). A number
of participants particularly highlighted that triceps, calf, as well as
forearm were “extremely hard to address” (P4, P8, P11, P12, P14,
P15). P15 mentioned that one muscle (triceps) was hard to activate
as he “couldn’t find a connection to control it”. When placing the
sensors, we asked the participants to activate the muscles. An in-
teresting observation was done by two participants, who stated
that for finding a connection to a muscle, it was “helpful, when an
external person touched the body region”.

3.9 Discussion
In our first exploratory user study, we compared the ability of partic-
ipants to control their muscle tension at different locations at their
body and to interact with the EMG system in a target selection task
with the headset as directional pointer. Highest input performance
was found at the temple with 94.1% compared to hand-based con-
trol. However, qualitative feedback from the participants indicated
that they used eyebrow movement or jaw pressure during that con-
dition to activate their muscles despite being specifically instructed
to not perform any movements and only to tense their muscles
by isometric contractions. Consequently, the participants likely
performed isotonic muscle contractions at the Temporalis anterior.
While the participants wore the VR headset it was not possible for
the experimenter to externally validate or even intervene when the
muscle tension in the condition Temporalis anterior at the temple
was not induced through isometric contractions during the calibra-
tion or the experiment. We cannot rule out whether the participants
deliberately ignored the instruction to “select the targets without
movement” or whether they were actually forced to move their
temple muscles as long as the weight of the headset put pressure
on their head. However, the finding was informative insofar as it
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Figure 3: Bar charts of the RTLX task workload score and subscales in the second study. Regarding the main score, the triceps
received a significantly higher workload rating than the muscle at the temple. The VR controller received significantly lower
ratings for perceived performance than the triceps and also significantly lower ratings for effort than the biceps.

was previously unclear whether the electrodes can actually be used
under the HMD and could be of interest to manufacturers of such
headsets, who could simply build in the electrodes into a device to
allow more interactions using facial parts.

The performance of muscles activated through isometric con-
tractions was correspondingly lower. The lowest throughput was
found on the triceps with 78.4% compared to hand-based control.
However, no significant differences were found between biceps,
triceps, calf, and forearm with the highest throughput at the fore-
arm (85.6%). Thus, the results suggest that stationary, isometric
muscle contractions do not significantly differ in terms of their
input performance between the muscle groups tested. Importantly,
there were no interaction effects with the index of difficulty. This
finding indicates that the participants tend to point equally well
during conditions with all body locations independent from the
level of difficulty.

4 STUDY 2: BIOFEEDBACK MODALITIES AND
EMG INTERACTION

Previous work showed that EMG biofeedback,i.e., rendering a user’s
own physiological signal can help users to focus on their own mus-
cle tension. However, which sensory cues are suitable for rendering
EMG signals and closing a biofeedback loop is currently unknown.
As humans have a limited set of resources available for mental
processes [117], one could assume that task performance based on
biofeedback from multiple cues can cause difficulties in sensory-
level processing, mental operations, and, thus, issues in performing
tasks. While sensory cues such as temperature, smell, taste, or per-
ception of organs in the vestibular system are being perceived with
some delays, our study focuses on the rendering of biofeedback
using the high-paced Visual, Auditory and Tactile cues.

Thus, we investigated the three modalities in a three-way full-
factorial within-subject design. As each of the three modalities
(and their combinations) were either present or not we had eight
conditions (none, visual, auditory, tactile, visual + auditory, visual +
tactile, tactile + auditory, visual + auditory + tactile) ordered in an
8×8 balanced Latin square study design. As in our first study, we
conducted a Fitts’ law target selection task [43, 66] to measure per-
formance and workload. Due to the low variance of the throughput
in the first experiment, its observability during the experiment to

Figure 4: Screenshot of the user’s view inVRduring the visual
feedback modality performing the Fitts’ law task. Left: 30%,
right: 60% muscle strength amplitude.

ensure isometric contractions, and its relevance in related litera-
ture [2, 11, 60, 120, 124], we used the Biceps brachii (at the front of
the upper arm) for EMG input.

4.1 Biofeedback Modalities
Auditory feedback was rendered via the headphones of the HMD
and consisted of a neutral summing sound that changed its pitch
depending on how strongly the participants tensed their biceps. As
the discrimination power of pitch sequences is higher compared
to loudness [19, 68] we used sound pitching as one-parametric
modulation of the audio cue keeping the loudness constant and
best recognizable for the participants. For tactile feedback we used
amplified vibration of a coin-type vibration motor. As the index
fingers have a high density of nerve cells, we placed the motor at
the index finger of the opposite arm where the EMG signal has
been recorded. To ensure that participants were not able to ignore
it, we placed the visual feedback as an orange-colored torus-shape
indicator of muscle strength in the center of the participants’ field
of view (see Figure 4). A concept of how the modalities closed the
biofeedback loop in our experiment is shown in Figure 5.

4.2 Apparatus
As calibration and task were similar as in our first study, we reused
parts of our Unity3D application running it on a PC with the
same specifications. As in our first study, edge-detection was im-
plemented with 20% upper and 10% lower trigger threshold. We
used the same Biosignalplux 4-Channel Hub with EMG sensors and
head-mounted display (HTC Vive Pro). We used Unity 3D Ardity
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API (9600 Baud) to communicate with an Arduino UNO R3 micro-
controller that outputs a pulse-width modulation (PWM) to power
an Iduino TC-9520268 coin-type vibration motor with an operating
voltage of 3.0 V/DC - 5.3 V/DC. The duty cycle of PWM was con-
trolled in steps from 80 to 255, 255 being 100% duty cycle at 5 V. The
vibration motor was operated at maximum speed capacity possible,
modulated by PWM with frequency 490 Hz in linear relation to the
amplitude of the muscle strength tension. An audio source in Unity
was a looped A-major chord2 with a pitch value starting at 0 %
pitch to 100% pitch. Pitch value was modulated using the calibrated
muscle strength value amplitude multiplied by a constant of 0.4
for noticeable and optimal hearing differences. The orange-colored
(RGB: 255,133,57) circle was clipped using radial fill (radial 360°) in
Unity starting from 0 fill to 1. The animation of the visual feedback
and the pitch of the sound were also linearly mapped using the
amplitude of the muscle strength tension.

4.3 Measures
We recorded the Fitts’ law-related measures as in our first study
(target selection time, effective IDs, target position, and actual hit
point coordinates) and the subjectively perceived workload using
the RTLX. To gain a deeper understanding of how participants
perceive the individual modalities and how well they were able to
control their muscle tension using that feedback, we conducted a
semi-structured interview. The questions in the survey were focus-
ing on the participants’ opinion (positively and negatively) on the
modalities and their combinations, the system, and the task. The
subjects were also asked on any other remarks they might have
regrading the experiment.

4.4 Procedure
As in our first study, participants signed the informed consent and
were introduced to the system. The general procedure regarding
the EMG sensor placement at the dominant arm was identical to
the first study, except that the muscles were not changed, but only
the biceps was tested. Additionally, the non-dominant arm has been
identified and was placed on a pillow beside for comfort. In addition,
we put the vibration motor between two rubber finger cots on the
index finger at the non-dominant hand, followed by comprehensive
instructions. The participant received and adjusted the HMD. To
ensure correct operation of the device, headphones and vibration
motor were tested with constant intensity and vibration at full level.
Participants were asked if they perceived all signals clearly and the
intensity was adjusted if desired. Participants were free to ask any
questions.

Calibrationwithout any feedbackwas started while the EMG raw
biosignal was visible for the experimenter to ensure that the desired
amplitude has been registered correctly. Maximum muscle strength
was then derived from at least three intensive but still comfortable
muscle tension phases as the individual trigger threshold, following
the same procedure as in the first study. There was one calibration
for all conditions of an individual participant. Participants were
pleased to “select the targets as fast as possible” and were also
instructed to “think aloud” in case of any concerns during system
usage. The Fitts’ law task then started with pseudo-randomized
2https://samplefocus.com/samples/atmosphere-loop-choir-5 (Public Domain)

Tactile

Auditory

Visual Circled Pointer

Sound Pitch

Vibration Motor

EMG Sensor

Bluetooth Hub

VR Headset

Target Selection Task (PC/Unity)

Figure 5: User in the second study in VR experiencing the
three feedback modalities. The system renders the EMG sig-
nal from the user with visual, auditory, and tactile cues. A
circled pointer in the shape of a partial torus renders the vi-
sual feedback. A pitched sound is used as auditory cue from
the EMG device. A vibration motor fixated under the index
finger renders tactile feedback.

IDs The following conditions with the corresponding modalities
and their combinations were randomized using the balanced Latin
square design. After each condition, the participants filled in the
RTLX within the virtual environment. After the VR experience and
removal of headset and electrodes, we collected the participants’
qualitative feedback in a semi-structured interview.

4.5 Participants
Participants were recruited using social networks and mailing lists
of our institution as well as via word of mouth. A total of 47 mem-
bers of our institution participated in the study. No volunteers
were excluded. The mean age of the participants (18 female, 29
male) was 29.106 (𝑆𝐷 = 6.312) ranging from 22 to 58 years. All
students were from a Master course in the field of computer science
and were compensated using credit points for their lecture. They
were informed that they can withdraw from the experiment at any
point without penalty. Staff members were reimbursed for their
working hours. No participant desired to quit or pause the study.
The study received ethical clearance according to the regulations
and COVID-19 protocols required by our institution. Seven partici-
pants could not be taken into account in the further analysis due
to multiple reasons (unilateral vision, invalid sensor placement, or
broken vibration motors during the interaction trial). Thus, a total
of 40 participants (12 female, 28 male) were considered in the final
analysis of the results.

4.6 Data Analysis
For data analysis of the recorded data samples from the target se-
lection task, we performed simple outlier filtering (Q1/Q3 ± 1.5 IQR
rule) and included 17105 from a total of 18179 samples (94.1%).
Duration of the experimental procedure was𝑀 = 25.536 minutes
(𝑆𝐷 = 7.159). As in our first study, the TPe of the Fitts’ law tar-
get selection task was calculated using the model for 2D tasks as
proposed by MacKenzie and Buxton [24, 43, 66].

https://samplefocus.com/samples/atmosphere-loop-choir-5


The Effects of Body Location and Biosignal Feedback Modality on Performance and Workload Using Electromyography in VR CHI ’23, April 23–28, 2023, Hamburg, Germany

2.607 2.4942.542 2.621 2.571 2.5462.426 2.516

Auditory: no Auditory: yes

Visual: no Visual: yes Visual: no Visual: yes
2.00

2.25

2.50

2.75

th
ro

ug
hp

ut
 (

bi
t/s

)

Tactile: no Tactile: yes
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Figure 6: Bar charts of the throughput performance mea-
sures for each biofeedbackmodality used in the second study.
Highest throughput was achieved using visual and tactile
feedback as well as when no feedback was rendered. A main
effect for the auditory feedback indicates that the average
throughput was significantly lower when auditory cues were
present compared to when not. All error bars show CI95.

4.7 Quantitative Results
4.7.1 Throughput. Shapiro–Wilk’s test among all conditions (all
with 𝑝 > .203) indicated normal distribution of the throughput
measures. We conducted a three-way RM-ANOVA to investigate
the effect of Auditory, Tactile, and Visual feedback modalities.
The results are shown in Table 2. There were statistically significant
effects for Auditory and Tactile × Visual biofeedback modalities.
Statistical power and probability of correctly rejecting the null
hypothesis for the two-way interaction between Tactile × Visual
was 83.9%. No gender-related effects or interactions were found
(all 𝑝 > .05). The lacking three-way interaction indicates that the
throughput decreased when auditory and tactile cues were present
and increased when tactile and visual cues were present. Thus, the
main effect for Auditory indicates that the average throughput
was significantly lower when auditory cues were present compared
to when not. Regarding the two-interaction of Tactile × Visual,
the throughput means show that the performance was higher when
both cues were present or not compared to visual or tactile cues
only. Individual throughput results of all conditions are shown in
Figure 6. The target selection time as a function of difficulty and the
condition-wise regression equations can be found in Figure 7(a).

4.7.2 Mean Target Selection Time. We performed an RM-ANCOVA
of the log-transformed mean time adding the ID as co-variate. The
analysis revealed a significant main effect of Auditory, 𝐹 (1, 269) =
6.140, 𝑝 = .014, 𝜂2𝑝 = 0.022 (medium). We also found two-way
interaction with all three possible combinations, Auditory × Tac-
tile, 𝐹 (1, 269) = 8.950, 𝑝 = .003, 𝜂2𝑝 = 0.032 (medium), Auditory
× Visual, 𝐹 (1, 269) = 3.993, 𝑝 = .047, 𝜂2𝑝 = 0.015 (medium), and
Tactile × Visual, 𝐹 (1, 269) = 8.367, 𝑝 = .004, 𝜂2𝑝 = 0.030 (medium).
Interestingly, there was no three-way interaction Auditory × Tac-
tile × Visual, 𝐹 (1, 269) = 0.010, 𝑝 = .919, 𝜂2𝑝 = 0.000 (unde-
tectable). The analysis further revealed a significant main effect of
the co-variate ID, 𝐹 (6, 269) = 61.579, 𝑝 < .001, 𝜂2𝑝 = 0.579 (large),

Table 2: Summary of the RM-ANOVA results of throughput
and workload measures depending on the three modalities
tested.

Throughput Workload (RTLX)

F(1,39) p 𝜂2𝑝 F(1,39) p 𝜂2𝑝

Auditory 4.857 .033*0.111 4.214 .047*0.067
Tactile 1.373 .248 0.034 1.254 .270 0.032
Visual 0.084 .774 0.002 2.741 .106 0.067
Auditory×Tactile 2.133 .152 0.052 1.300 .261 0.033
Auditory×Visual 0.679 .415 0.017 1.494 .229 0.038
Tactile×Visual 4.706 .036*0.108 2.186 .148 0.054
Auditory×Tactile×Visual 0.637 .429 0.016 2.346 .134 0.058

however, showed no interaction effect with the other factors (all
with 𝑝 > .136), indicating that the target selection time does not
depend on Auditory, Tactile, or Visual cues. Considering the
absence of no overarching three-way interaction, the analysis of
the target selection time revealed that the time independent from
the difficulty is affected by always two modalities.

4.7.3 Response Time vs Fatigue. All conditions were performed in
counter-balanced order using the same muscle (Biceps brachii) and
over a relatively long period of time (𝑀 = 25.536 min., 𝑆𝐷 = 7.159).
Average trial time (without questionnaires and calibration) per con-
dition was𝑀 = 3.192 min (𝑆𝐷 = 0.895). The participants reported
strong learning as well as potential fatigue effects (see qualitative
results) indicating that there is a non-linear relationship between
the duration of the experimental trial and muscle response time.
Thus, we evaluated the data to determine a functional relation-
ship between the target selection time and trial duration regarding
the different levels of difficulty. We performed a locally estimated
scatterplot smoothing (loess) fit to determine the convergence and
inflection points when the learning and potential fatigue effects
had their best trade-off. Bias-corrected local polynomial regression
with automatic smoothing parameter selection and generalized
cross-validation (GCV) determined a smoothing matrix with 5.53
parameters based on 17105 observations. The fit (𝑑 𝑓 = 1) deter-
mined 0.696 as an optimal span control parameter. The final loess
fit for movement time among the individual IDs is shown in Fig-
ure 7(b). For control, we computed the inflection points and found
that the lowest movement times ranged from 13.907 to 17.173 mins
(𝑀 = 15.449, 𝑆𝐷 = 0.978). Spearman correlations coefficients of the
IDs with a second-wise sampling of the function fits ranged from
0.650 (strong) to 0.990 (very strong), (all with 𝑝 < .001), indicating
that learning and potential fatigue effects converge similarly among
the IDs.

4.7.4 Subjective Workload. Shapiro-Wilk test on all conditions did
not show any evidence of non-normality on the RTLX score (all
with 𝑝 > .15). The results of the analysis are summarized in Table 2.
A three-way RM-ANOVA revealed a significant interaction main
effect of Auditory feedback. An analysis of the RTLX subscales
revealed a main effect of Visual on performance, 𝐹 (1, 39) = 6.029,
𝑝 = .019, 𝜂2𝑝 = 0.134 (medium), a main effect of Auditory on
frustration, 𝐹 (1, 39) = 5.245, 𝑝 = .027, 𝜂2𝑝 = 0.119 (medium), and an
interaction effect of Tactile × Visual, 𝐹 (1, 39) = 9.145, 𝑝 = .004,
𝜂2𝑝 = 0.190 (large), no further main or interactions were found
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(b) Target selection time during the experimental trial

Figure 7: Target selection time as a function of the IDe 7(a) and target selection time in course of the experiment 7(b) in the
second study. All error bars show CI95. The fitted curves in 7(b) indicate a decrease of target selection time due to learning
effects and a decrease after potential fatigue. Difficulty-dependent inflection points were found between 13.907 mins (ID=4.52)
and 17.173 mins (ID=2). Colored areas in 7(b) indicate the standard error of the loess fit.

between those and other RTLX subscales. Thus, perceived perfor-
mance was higher when visual cues were on. Frustration was lower
when audio was on, and higher when tactile and visual cues were
rendered compared to when the modalities were off. All RTLX
scores and subscales results are shown in Figure 8.

4.7.5 Modality Preferences. We also asked participants, which feed-
back they finally prefer and not prefer. A majority of 23.4% (𝑁 = 11)
preferred Visual feedback only. Auditory, Tactile, Auditory &
Visual, Tactile&Visualwere preferred by 12.8% (𝑁 = 6) each. All
modalities at once were preferred by 8.5% (𝑁 = 4). Least preferred
was Auditory & Tactile with 4.3% (𝑁 = 2). Only one participant
(2.1%) desired no feedback. 10.6% (𝑁 = 5) participants were too
vague or undecided about the best modality. Regarding the worst
experience, most participants 25.5% (𝑁 = 12) rejected Auditory
modality. 19.1% (𝑁 = 9) found that lacking feedback at all worst.
17.0% (𝑁 = 8) found Tactile worst, 7.50% (𝑁 = 4) Visual. 6.4%
(𝑁 = 3) each rejected the Auditory & Visual, Auditory & Tac-
tile, or Auditory & Tactile & Visual combinations. Only two
participants (4.3%) found Tactile& Visual to be worst, three (6.4%)
were not sure or remained vague.

4.8 Qualitative Results
Thematic analysis was used to build a structure and deeper under-
standing of the qualitative assessments after verbatim transcription.
Two researchers went independently through the comments and
coded them to identify when and where common categories and
patterns occurred. In the next stage, we combined the codes into
overarching themes and a coherence meeting was held to merge
the results and solve the final discrepancies.

4.8.1 Biofeedback is generally appreciated. The participants found
that the feedback methods “were coherent to muscle tension” (P3),

“helped me to feel like I have control over my muscle” (P20), the
feedback “came pretty quick and accurate to represent the strength
imposed” (P44), and that it “made the task easier to complete” (P4,
P32). The participants pointed out that all feedback methods were
generally “helpful” (P46), “responsive” (P17, P35), “enjoyable” (P25),
“interactive” (P31), and that “the apparatus worked quite well” (P42).

4.8.2 Informativeness for usability and flow. Due to the repetitive
nature of the task, comments on usability were often related to the
concept of flow and distractions interrupting it. The supportive rela-
tionship between informativeness and flow becomes evident in state-
ments about the feedback as it “increases concentration, reduces
stress levels, reduces mental stress and physical exertion” (P39) and
that “the pressure indicator helps to focus” (P25). Fifteen partic-
ipants found the visual feedback as being generally informative,
nine of them additionally highlighted that it helps to estimate the
muscle tension correctly. It received the most unequivocal positive
comments regarding its informativeness and usability, considered as
“very clear and understandable” (P3), “best compared to tactile and
audio” (P38), “noticeable and easy to understand, how it represented
the muscle activation” (P13), and “useful to notice the strength I put
in the muscle” (P24). Tactile cues were particularly highlighted by
P29, “as supportive co-information” alongside with visual feedback.
Similarly, P18 mentioned that “the visual feedback was good to have
as co-information, but vibration would be preferred by me”. Seven
participants perceived tactile feedback as the most preferred one.
Most of the comments were related to its usability. The vibrations
were perceived as “very unobtrusive” (P30), “quick and very easy
to sense” (P27), “very pleasant” (P10), and “easier to perform the
task” (P33).

The least informative and usable cue was the auditory feedback.
Only six participants found the auditory feedback as being sup-
portive, one of them acknowledged “the coherence of the required
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Figure 8: Score and subscale ratings of the NASA Raw-TLX questionnaire of the second study. All error bars show CI95.

muscle tension” (P3) and others found that the feedback “helps
to concentrate” (P25) and mentioned that the “sound was a con-
firmation of the selection” (P26). Participants stated that “some
feedback methods on their own were very powerful and could
perform better than the other combinations” (P40), and some partic-
ularly highlighted that only combined feedback is more informative.
For example, P23 pointed out that ”the more feedback methods,
the better you knew if you hit the points”. Still only two partici-
pants (P40, P42) preferred a single modality feedback compared
to multi-modal feedback, indicating that more cues provide more
informativeness about the state of the muscle.

4.8.3 Information overload, obtrusiveness, and repetitive patterns
distract. P20, for instance, highlighted that the “combination of
all feedback methods stressed me”, and saw an effect on the own
physiological response: “and sometimes even made me tensing my
muscle” (P20), concerned regarding an information overload. Simi-
larly, P23 stated that “the more feedback, the more stressed I was.
Sound was the most stressful”. Particularly, the repetitive patterns
in the auditory modality was considered to be “annoying” (P7, P30,
P41, P27) and “stressing” (P14, P23, P41). Participants wondered
about the “sound might be better if it was a simple beep” (P30)
or considered the circular shape of the visual feedback as some-
times “distracting” (P29, P30). Lacking obtrusiveness could also be
perceived negatively. P40, for example, mentioned that “without
visual feedback, it was a little difficult to follow” or P38 was not
able “to focus on vibrations” as it was “not very much influencing
during the tasks”, both indicating that the participants tried to find
support for their flow.

4.8.4 Fatigue/exhaustion, inconsistency, and habituation. Many of
the suggestions around fatigue/exhaustion were related to the er-
gonomics of the system and the procedure in general, stating the
headset felt “heavy after a while” (P6, P37), one had “to bend my
neck down a lot for the lower circles as the virtual wall was pretty
close” (P14) and “the eyes start straining after using for more than
30 minutes” (P6). The upper arm as a trigger was also criticized
because “physical strain on muscle discourages to continue” (P25),
“contracting muscle over a long period of time is inconvenient.”
(P18) and “triggering via the upper arm can be difficult because [...]
my head moves slightly when I tense my muscle” (P34). P17 com-
plained that the system was generally “not consistent with actual

muscle contraction”, some participants had difficulties anticipating
between muscle activation and sound, such as P31 stating that “au-
ditory [feedback] took time for me to get it” and one participant
found that the vibration baseline was “too intense”, pointing to
perceived inconsistency. Interestingly, one participant particularly
highlighted that “tactile feedback increased the inner frustration
with wrong targeting” (P28).

A convergence of learning and fatigue/exhaustion became evi-
dent statements such as from P36, who mentioned that “frustration
started peaking at the end because I started to feel that it was on
purpose that sometimes I had to tense my muscle longer or harder
to make the dot disappear, whereas, in the beginning, I thought it
was because I wasn’t good at clenching the specific muscle needed”.
Participants noted that “it was a great experience” (P16), “like play-
ing a video game” (P38), and that they became more proficient after
a period of time (P22, P23). Thus, the participants perceived learning
as a positive side effect of habituation. One participant also desired
to improve the system usage through more training sessions (P1)
indicating that not all participants suffered from fatigue/exhaustion
and even desired to become more familiar with their own muscle
activity.

4.8.5 Summary. The participants appreciated informativeness and
usability in their biofeedback modalities as support for their flow
while using the system. Importantly, the results show that some
modalities can produce stress due to their obtrusiveness, through
repetitive patterns, or even by information overload, e.g., while using
too many modalities. More unpleasant emotions were caused by
fatigue/exhaustion of the muscle or through the system in general,
and an inconsistency between the signal and the biofeedback modal-
ity. Interesting findings here were that some participants noticed an
interplay of learning and fatigue effects on their own performance,
and reflected on learning the procedure by improving their own
performance as well as that habituation supported their learning.

4.9 Discussion
The analysis of the results revealed significant main and interac-
tion effects of the feedback modality on objective and subjective
measures. The results also show that there is no single modality
that systematically improves the target selection time or workload.
Even when the qualitative feedback revealed that most participants
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rather tend to prefer visual feedback, there is no evidence that visual
feedback alone increases the objective input performance. How-
ever, a main effect of the sound-based conditions revealed that the
throughput was generally and negatively influenced by auditory
feedback. An interaction effect of auditory with tactile feedback on
the mean time indicates that performance can decrease when more
feedback is being rendered. Interestingly, while the main effect
indicates that audio has a negative impact on throughput and audio
was the least favored in the qualitative comments, the subjective
frustration was lower when audio was on.

A two-way interaction effect on the throughput while using
tactile and visual feedback indicates combined modalities can have
a positive impact on the input performance. This is in line with
qualitative comments stating that some combinations of feedback
modalities can support the participants. However, rendering all
modalities at the same time are rather being perceived as distracting
and does not necessarily increase objective performance measures.

The participants’ qualitative comments provided additional in-
sights into the usage of EMG systems. In particular, the participants
noticed a learning effect that converged with potential muscle fa-
tigue after a certain period of time. This was also evident in the ob-
jective data and we were able to determine a maximum throughput
after 15.9 mins (without calibration phase) at which the participants
could optimally activate their biceps. A non-linear relationship be-
tween experimental trial time and input performance indicates that
participants became familiar with the EMG input after a certain
period of time, but also that the muscles then began to tire after
a short time span. Thus, the results may depend on the nature of
Fitts’ tasks, since participants who select potential targets faster
also tire more quickly. As participants went subsequently through
the conditions and some were faster than others, we can only con-
ditionally assume that everyone experienced sets of muscle fatigue
in the same way – which is why we define these as potential fatigue
effects, as other factors (general fitness, endurance, body awareness,
etc.) also could play an individual role after reaching an average
optimum.

5 GENERAL DISCUSSION
In two studies, both based on a standardized Fitts’ law task in VR,
we investigated how isometric muscle contractions, registered with
an EMG device, affect the interaction while target selection. Ob-
jective and subjective measures from both studies showed that
continuous performing voluntary contractions without movements
are challenging. In our first study, we found that the input perfor-
mance between the body locations changed significantly, but, not
between the muscles activated isometrically. In the second study,
we showed that the input performance with those contractions
could be improved using biofeedback – rendering the physiolog-
ical signal back to the user. We tested three modalities (auditory,
tactile, visual) and found that the combination of tactile and visual
cues positively and auditory negatively affect the control over the
own body function. Lacking interaction effects with the index of
difficulty in both studies indicate that the ability to select targets
using the HMD and muscle is robust regarding the targets’ size
and distance, which is important for the design of EMG-based user
interfaces [93] or therapeutic applications in VR [2].

The challenging nature of performing voluntary contractions
was particularly evident in the qualitative comments. The partic-
ipants reported learning effects as well as muscle fatigue, which
could be found in turning points of the response times in course of
the second study. Muscle fatigue caused by isometric contractions
is intensively discussed by related work [3, 22, 29]. However, many
applications using subtle [71], health-promoting [25, 91, 101], or
motionless [14] interactions depend on or even require isometric
muscle control [2, 22, 92]. Here, VR has established as a stimulating
and motivating kind of application not only to support training but
also multi-modal muscle control [42, 84, 89, 101].

The findings are important for designers of (immersive) applica-
tions using multi-modal biofeedback based on EMG sensors, how-
ever, are not necessarily be limited to applications in VR.We assume
that multi-modal feedback using visual and tactile cues can also
support users in real-world scenarios, in AR or with other devices
registering muscle activities. Bioengineers can facilitate e.g., visual
and tactile feedback to train or support people with artificial limbs.
The findings can also be transferred to games when multi-modal
feedback of physiological signals is desired. However, extensive
muscle usage, as in our Fitts’ law task, should be avoided when pos-
sible. An interesting observation before calibration was that some
participants had issues with initially locating the target muscle un-
der the sensor. After touching the corresponding muscle site with
the experimenter’s fingertips, we observed that the participants
were then quicker in forcing their tension in that muscle. This indi-
cates that tactile cues could assist people in directing their isometric
contractions and facilitate easier usage while initial application.

5.1 Limitations and Future Work
Our findings on using body location for EMG are limited to the
testedmuscles andwhile seated. Consequently, more body locations
such as butt, thighs, or shoulders can be tested for EMG input and
potentially benefit from (more) biofeedback modalities (c.f. [99]).
Isometric muscle contraction at those locations is a sensor-muscle-
human dependent process that can also be detected using signal
classifiers, e.g., machine learning for improved signal processing.
This form of classification becomes potentially significant when
conscious and voluntary muscle activity interferes with continuous
muscle activity, e.g. while walking or in non-sedentary settings,
which can be investigated by future work. Subject of future work
could also be an investigation of alternative biofeedback visualiza-
tions rendering the visual, audio, and tactile feedback as well as com-
bined electrical muscle stimulation (EMS) and EMG (c.f. [49, 77]) or
comparison of different body locations for vibro-tactile feedback.

Our findings can be applied to multi-modal games engaging their
users in hands-free interactions or ubiquitous EMG wearables for
interaction with virtual or augmented content beyond the lab. EMG
applications in physiotherapy, gait and motion analysis, and sports
training could be enhanced by interactive multi-modal biofeedback
in VR or AR supporting therapists and patients via feedback on
quantity and quality of muscle work. We highlight that people with
certain disabilities, such as muscular dystrophy, or elderly have
varying perceptual thresholds and feedback modalities (e.g., the
vibration or sound intensity) as provided in our study might be
customized by or adapted to the user. To replicate our studies and for
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further investigations, we provide the source code with instructions
including the Unity Project and Arduino code at Github3.

5.2 Conclusion
In this paper, we investigated if and how muscle-based input us-
ing VR and multi-modal biofeedback with EMG devices can be
improved regarding the users’ performance and workload. While
isometrically activated muscles are more difficult to control than
movement-dependent (isotonic) contractions, no difference in input
performance was observed among the different body locations with
isometric muscle contractions. However, our research shows that
interactions with EMG-based systems in VR designed to register
voluntary muscle contractions can be improved with combined
visual and tactile multi-modal biofeedback. Qualitative feedback
pointed to the phenomenon of muscle fatigue and more research
is required to understand its role in long-term interaction and the
usage of biofeedback. We highlight the necessity of discrimina-
tion between isotonic and isometric contractions and to register
voluntary contractions in non-sedentary settings.
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