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ABSTRACT
This paper presents the results of a user study examining the impact
of biofeedback awareness on the effectiveness of stress manage-
ment, utilizing Electrodermal Activity (EDA) as the primary metric
within an immersive Virtual Reality (VR). Employing a between-
subjects design (N=30), we probed whether informing individuals
of their capacity to manipulate the VR environment’s weather im-
pacts their physiological stress responses. Our results indicate lower
EDA levels of participants who were informed of their biofeedback
control than those participants who were not informed about their
biofeedback control. Interestingly, the participants who were in-
formed about the control over the environment also manifested
variations in their EDA responses. Participants who were not in-
formed of their ability to control the weather showed decreased
EDA measures until the end of the biofeedback phase. This study
enhances our comprehension of the significance of awareness in
biofeedback in immersive settings and its potential to augment
stress management techniques.
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1 INTRODUCTION & BACKGROUND
Biofeedback for stress management is important for enhancing
individual well-being and health [1, 6, 12, 19, 46]. Biofeedback pro-
vides real-time feedback on physiological processes and empow-
ers individuals to gain control over their stress responses and has
been increasingly recognized for its potential in treating a vari-
ety of stress-related conditions [8, 28, 33]. When users are aware
of their physiological responses related to stress, such as heart
rate, muscle tension, or skin conductance, they can learn to con-
trol these responses deliberately [2, 4, 40]. By enabling individu-
als to monitor and adjust their physiological states, biofeedback
offers a responsive and effective alternative to managing stress,
potentially reducing the reliance on pharmacological interventions
and promoting holistic health. To assess stress for biofeedback ap-
plications and in real-time, medical practitioners and researchers
use electrodermal activity (EDA) – among others also known as
galvanic skin response (GSR) or electrodermal response (EDR) –
the skin’s electrical conductance and sympathetic response, which
varies due to sweat gland activity linked to stress and emotional
arousal [3, 11, 34, 42, 45].

EDA is a non-invasive, sensitive, and reliable marker of the
sympathetic nervous system’s activity, making it an ideal met-
ric for biofeedback in stress management in the field of human-
computer interaction (HCI). Particularly using EDA in immersive
environments, such as in Games [22, 27, 30] and immersive en-
vironments [5, 17, 20, 43], has gained increased interest for HCI
researchers. Immersive environments offer a non-distracting plat-
form for engaging users in stress management interventions by
providing a controlled yet dynamic setting where physiological
responses can be fully monitored and modulated in real-time. The
immersive nature of virtual reality (VR) and interactive environ-
ments enhances the user’s sense of presence, making the biofeed-
back experience more impactful [20]. The use of EDA in immersive
settings also allows for a nuanced understanding of testing and even
inducing stress interventions and how users respond to various
stimuli and stressors within the virtual environment [9], enabling
researchers and practitioners to tailor interventions more precisely
to the user’s needs and preferences with specialized interactive
systems and applications [5].
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“Closing the biofeedback loop” depends on the user’s awareness
of consciously perceiving the biofeedback process and the extent of
feeling to directly control the physiological response. For example,
researchers found an increased muscle activity in high-awareness
tasks using electromyography (EMG) and a reduced activity where
participants were not fully aware of the functional control [36–
38, 41]. Thus, an increased or higher awareness about the physio-
logical function may significantly alter the strategy to control the
physiological response and could be used to enhance or decrease
the effectiveness of biofeedback techniques. This is important for
HCI researchers and healthcare practitioners utilizing a wide range
of applications such as in virtual reality [23]. These applications do
not only comprise measuring stress in VR [7, 29, 32], but also using
the signal as biofeedback modality [44] such as for anxiety [24]
or phobia treatment [21], trauma coping [25], emotion-adaptive
games [10], skill training [31] or architectural feedback in VR [26],
or for altered appearances of one’s own avatar [39].

However, it is currently unknown if increased or decreased
awareness of being in a closed biofeedback loop changes the physio-
logical response to stress in an immersive environment. This gap in
knowledge actually addresses an important question in biofeedback
research: Does the conscious recognition of biofeedback alter the
effectiveness of stress management strategies? We hypothesized
that the belief in controlling the body’s function is not per se tied
to the control of the body’s function which could further reveal the
role of secondary mediators of stress-coping skills [18, 34] or a per-
son’s stimulus-response specificity [13]. Therefore, we conducted a
preliminary user study and presented initial results as a first step
within a larger research effort investigating the mechanisms behind
biofeedback awareness and the role of multimodal biofeedback in
immersive VR settings.

In this paper, we present the study’s results exploring the im-
pact of biofeedback awareness on the efficacy of biofeedback in
stress management, using EDA as a primary measure and biofeed-
back control using a VR weather control system. Although the
measurement and rendering of the feedback occurred in real time,
participants did not necessarily feel direct control over their skin
conductivity, which allowed us to look at the definition of aware-
ness in two different ways: informing participants about control
(informed control) or asking if they feel control (control-aware). We
found that the EDA measures of participants who were informed
at the beginning of the biofeedback phase about their ability to
control the weather were significantly higher at the end of the
phase than those who were not informed. Participants who did not
believe in their ability to control the weather showed decreased
EDA measures until the end of the biofeedback phase. Our findings
contribute to a better understanding of closing the biofeedback
loop using immersive environments and fostering new research
branches in that field.

2 METHOD
2.1 Study Design
To understand if biofeedback awareness affects the physiological
response during stress management, we conducted a VR user study
in which the EDA was used to control the weather in an immersive
environment. Participants were either informed about their ability

to control or not (informed control), resulting in a between-
subject study in which the participants (and experimenter) were
blind to the conditions. In addition, we were interested if the partic-
ipants felt control over the weather (control-aware), which was
assessed posterior to the VR experience. As all participants experi-
enced the same amount of time, we used Time as a within-subject
variable, assuming an interaction effect with Informed Control
or Control-Aware, indicating that the EDA will change during
the biofeedback phase.

2.2 System and Biofeedback Control
The key biofeedback parameter in our study is the EDA. We used a
PLUX Biosignals OpenBan1 kit with skin conductance electrodes
to measure the EDA. The electrodes were attached to the index
and middle finger of the left hand. The sampling rate was 1,000 Hz
with 16-bit resolution. To convert the raw values (ADC) into mi-
crosiemens (µS) as physical unit we used the following conversion
formula as suggested by the openBan datasheet and with 3V for
VCC:

𝐸𝐷𝐴(𝜇𝑆) =
𝐴𝐷𝐶
2𝑛 ∗𝑉𝐶𝐶

0.12
(1)

We used the Unity game engine (2021.3.6f1) and the Biosignal-
splux interface for Unity2 to implement the VR application. For the
visual representation of the animated weather in the biofeedback
scene, we used the WeatherMaker asset3 by Digital Ruby. The as-
set provides a realistic and smooth transition between volumetric
cloud profiles with fluid animations. Animation transitions were
set in a period of 10 seconds using linear interpolation. The as-
set also included suitable sound effects for the respective weather
conditions. By leveraging the minimum and maximum values of
the participant’s EDA, each received value was transformed into
a single weather variable transitioning between different weather
profiles. Thus, the weather variable could take on values ranging
from 0% to 100%, where 0% represented a very relaxed state on a
sunny day, and 100% indicated a state of high stress using stormy
cloud profiles.

The Unity application ran on an XMG Fusion 15 Laptop with
Intel Core i7-9750H, GeForce RTX 2070 Max-Q, 16GB RAM, and
Windows 10. While targeting frames per second (FPS) in Unity
was set to 90, the application’s average FPS was around 52 Hz. As
VR head-mounted display (HMD) we used the HTC Vive Pro and
SteamVR. The VR controller in the participant’s right hand was
only visible during the mental arithmetic task. We used the meadow
environment from the Dynamic Nature Asset4 from the Unity As-
set Store for vegetation and animations in the nature scene during
the relaxation and biofeedback phases. The system automatically
calibrated the participant’s skin conductance value during the relax-
ation and stress tasks for a (possible) full-range weather transition
during the biofeedback phase. The application ran fully automatic
to prevent any intervention from the experimenter.

1https://www.pluxbiosignals.com/products/solo-kit
2https://github.com/pluxbiosignals/unity-sample
3https://assetstore.unity.com/packages/tools/particles-effects/weather-maker-
volumetric-clouds-and-weather-system-for-unity-60955
4https://assetstore.unity.com/packages/3d/vegetation/meadow-environment-
dynamic-nature-132195
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Figure 1: Photo of the experimental setup (a) and screenshots of the three phases in VR: Seven minutes in the Relaxation Phase
(b) ensured a decreased EDA level as a minimum baseline for calibration. Maximal EDA levels were obtained in the Mental
Arithmetic Task (c) based on the Trier Social Stress Test (TSST) paradigm to induce cognitive stress. In the biofeedback phase
(d), the participants were able to control the weather activity from stormy (100% EDA) to sunny (0% EDA).

2.3 Procedure
After signing the informed consent and being briefed on the experi-
mental setup, each participant was seated in our laboratory. Before
launching the Unity application, the openBan device was attached
to the fingers of the participant’s left hand, and they were equipped
with the HMD. The Unity application automatically assigned partic-
ipants to an experimental condition, with the experimenter and the
subject initially unaware of the condition. During the application’s
operation, participants received no further instructions other than
those provided. The application’s procedure was divided into three
phases: Relaxation Phase, Stress Phase, and Biofeedback Phase (see
Figure 1). The entire experimental procedure in VR lasted 24 min-
utes for all participants and was planned using the HCI studies
toolkit [35].

2.3.1 Relaxation Phase. Participants were instructed using a visual
prompt to relax (panel was visible for 20 sec). In this scene, a serene
environment with natural sounds was displayed. This phase lasted
exactly seven minutes (420 sec) to ensure full relaxation of the
participants. The minimum EDA recorded in this phase was used
to calibrate the weather conditions in the Biofeedback Phase.

2.3.2 Stress Phase. In this phase, participants solved a mental arith-
metic challenge within seven minutes, based on the serial subtrac-
tion task from the TSST [14]. They were placed in a stressful office
environment with loud noise and flickering lights. Participants had
to continuously subtract thirteen from 1,039 and enter the result
into a numerical field using a VR controller. Correct entries were
acknowledged with a rewarding sound and a green cube lighting
up. If time ran out or an incorrect entry was made, a loud horn
sounded, and the number reset to 1,039. The remaining time was
reduced by one second after each successful entry to increase stress.
Additionally, at certain checkpoints, a false attempt was falsely
attributed to the participant, resulting in the horn sounding and
progress resetting. The participants’ maximum EDA values were
determined in this phase.

2.3.3 Biofeedback Phase. In the experimental phase, participants
controlled the weather using their stress levels as biofeedback.
Through the relaxation and stress phase, we calibrated the user’s
response tomap it linearly onto the weather conditions from stormy

(maximal EDA) to sunny (minimal EDA). A task panel in the field-
of-view (FoV) (visible for 20 sec) prompted the participants to relax
while the informed group received the information that they could
control the weather. High-stress levels were visualized by a fierce
storm tossing trees and plants. The sky was covered with dark
thunderclouds, heavy rainfall prevailed, and nature was shrouded
in darker light. The more the participants relaxed, the less rain fell,
the clouds dissipated, the wind animations calmed down, and the
sun illuminated nature again, thus returning to the calm state of
the relaxation phase. The biofeedback phase lasted ten minutes.

2.4 Participants
Thirty participants were recruited via social networks and mailing
lists of our institution. The mean age of the participants was 23.333
(𝑆𝐷 = 3.613), ranging from 18 to 34 years (6 female, 24 male).
Twenty-one were computer science or mechanical engineering
faculty students, and nine were our institution’s staff members
or in vocational training. Students were compensated with credit
points for their lectures, and staff members with working hours.
The study received ethical clearance according to the guidelines
and hygienic instructions of our institution.

2.5 Data Analysis
Raw data were recorded throughout the experiment. We only con-
sidered the EDA for hypothesis testing in the biofeedback phase
where participants controlled the weather (840 - 1440 seconds after
application start). To reduce the noise in the data, we aggregated
the raw values within each second using their median.

3 RESULTS
3.1 Objective Measures
Interestingly, the responses from the participants were markedly
distinct. Among the informed participants, 8 out of 15 (53.3%) cor-
rectly surmised that they had the ability to control the weather.
In contrast, 7 out of the 15 participants (46.6%) who were not in-
formed also believed that they had control over the weather. Pear-
son Chi-squared test of independence was conducted to assess
the relationship between the variables Informed Control and
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Figure 2: Electrodermal activity (EDA) of 30 participants, all of them controlling the weather in the VR Biofeedback Phase
(Error bars show standard error). Fifteen participants were informed that their physiological responses will control the weather,
while the other 15 were not provided with this information (the infopanel disappeared at the dotted vertical line). Additionally,
post-experiment inquiries revealed that 16 participants found their physiological responses had influenced the weather,
whereas 14 did not hold this belief. Their EDA measures are shown in the right graph. Linear regression model fit (dashed
lines) using REML estimation on participant level showed significant interaction effects (both 𝑝 < .001) indicating that the EDA
measures of participants informed at the beginning of the biofeedback phase were significantly lower at the end of the phase
than those who were not informed. Participants who believed in their ability to control the weather showed elevated EDA
measures until the end of the biofeedback phase.

Control-Aware, which was not significant, 𝜒2 = 0, 𝑝 = 1. There-
fore, we considered both groups independently and analyzed them
separately using linear mixed model analysis.

3.1.1 Informed Control. We fitted a linear mixed model using
restricted maximum likelihood (REML) and nloptwrap optimizer of
the lme4 package5 for R to predict the EDA (in 𝜇𝑆) with Informed
Control and Time as independent variables (IVs). Since all par-
ticipants were in the VR for exactly the same amount of time, the
time was treated as within-subject variable. The model included
the subject as a random factor. The model showed substantial ex-
planatory power, with a conditional 𝑅2 of .91. The contribution
from fixed effects alone (marginal 𝑅2) is .03. The intercept of the
model, representing the scenario of non-informed and time = 0,
is at 9.78 (𝐶𝐼95 = [8.040, 11.510]), 𝑡 (17976) = 11.04, 𝑝 < .001.
The main effect of being Informed Control is positive but sta-
tistically non-significant, 𝛽 = 1.170 (𝐶𝐼95 = [−1.280, 3.620]) ,
𝑆𝑡𝑑.𝛽 = −0.090 (𝐶𝐼95 = [−1.280, 3.620]), 𝑡 (17976) = 0.930, 𝑝 =

.350. The effect of Time is statistically significant and negative,
𝛽 = −0.003 (𝐶𝐼95 = [−0.003,−0.003]), 𝑆𝑡𝑑.𝛽 = −0.150 (𝐶𝐼95 =

[−0.150,−0.140]), 𝑡 (17976) = −45.400, 𝑝 < .001. However, also
the interaction effect of Informed Control × Time is statistically
significant and negative, 𝛽 = −0.001 (𝐶𝐼95 = [−0.002,−0.001]),
5https://cran.r-project.org/web/packages/lme4/index.html

𝑆𝑡𝑑.𝛽 = −0.060 (𝐶𝐼95 = [−0.070,−0.060]), 𝑡 (17976) = −14.050,
𝑝 < .001. Standardized parameters were derived by fitting the
model to a standardized version of the dataset. The 95% CIs and
p-values were calculated using a Wald t-distribution approxima-
tion. Thus, that analysis confirmed the assumption that the EDA
of participants being informed at the beginning of the biofeedback
phase were significantly lower at the end of the phase than those
who were not informed.

3.1.2 Control-Aware Biofeedback. For Control-Aware, we fitted
a second linear mixed model with subject as a random effect factor.
The model’s total explanatory power is substantial (conditional
𝑅2 = 0.91) and the part related to the fixed effects alone (marginal
𝑅2) is 0.03. The model’s intercept, corresponding to not aware and
time = 0, is at 11.51 (𝐶𝐼95 = [9.710, 13.310]), 𝑡 (17976) = 12.55,
𝑝 < .001. The main effect of Control-Aware is negative but
statistically non-significant, 𝛽 = −2.150 (𝐶𝐼95 = [−4.610, 0.310]),
𝑆𝑡𝑑.𝛽 = 0.04 (𝐶𝐼95 = [−0.660, 0.730]), 𝑡 (17976) = −1.71, 𝑝 =

0.087. The effect of Control-Aware is statistically significant
and negative, 𝛽 = −0.005 (𝐶𝐼95 = [−0.005,−0.005]), 𝑆𝑡𝑑.𝛽 = −0.23
(𝐶𝐼95 = [−0.240,−0.220]), 𝑡 (17976) = −69.56, 𝑝 < .001. The in-
teraction effect of Control-Aware × Time is statistically signif-
icant and positive, 𝛽 = 0.002 (𝐶𝐼95 = [0.002, 0.002]), 𝑆𝑡𝑑.𝛽 = 0.10

https://cran.r-project.org/web/packages/lme4/index.html
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(𝐶𝐼95 = [0.090, 0.110]), 𝑡 (17976) = 21.48, 𝑝 < .001. Thus, partici-
pants who believed in their ability to control the weather showed
higher EDA values until the end of the biofeedback phase. We
also analyzed the data under one single model and considering the
hypothesis if there is a three-way interaction between Informed
Control × Control-Aware × Time, which was, however, not
significant (𝑝 = .914). We note that the rank deficiency in the model
due the limited samples size causes a chance of type III errors and
does not allow valid conclusions about if the EDA of informed and
control-aware participants (or other combinations) were different.
The same applies to the effect of gender.

3.2 Subjective Feedback and Observations
As already mentioned, only eight participants from the group in-
formed about the biofeedback actually believed that it was biofeed-
back that caused the weather change. After the experiment, seven
participants believed that the weather has been controlled by their
stress level, even though they were not informed. Consequently,
14 participants, almost evenly distributed in both groups, were
strongly convinced that the weather was not manipulated by their
stress or relaxation obtained from their EDA. While all of them
observed that the weather changed over time, only ten of them
cited as a reason that they were not convinced that the weather
was being manipulated by them did not feel stressed or relaxed at
all. However, a decrease in the EDA data of all participants was
noticed. Thus, we suspect that not all participants can accurately
assess their level of cognitive load.

The participants who believed that their body controlled the
weather stated that they felt connected with the environment.
"When I breathed in and out, the weather improved. When I was
getting excited, the weather worsened," (P20). Every third partici-
pant experienced boredom during the relaxation scene. However,
most of them reported positive feelings, including relaxation or
a state of serenity during that first phase. Only two participants
were annoyed during the experiment due to restricted movement
caused by the sensor attached. In total, 25 participants described in
their own words that they felt particularly stressed, frustrated, or
angry during the arithmetic task. Three stated that they felt chal-
lenged, one felt competent enough, and only one participant (P8)
reported feeling good after the task. Indeed, his EDA reflected this,
as despite a significant increase during the transition to the stress
scene, his EDA quickly recovered after the beginning after starting
the task. Generally, most participants praised the VR environment,
even though the graphics and resolution were criticized. Generally,
the biofeedback itself was positively received by the participants.
The arithmetic task, however, was mostly negatively recognized
and as being too stressful.

4 DISCUSSION
In this study, we explored the impact of biofeedback awareness on
physiological responses during stress management in VR. Thirty
participants were involved in a between-subject design, where they
were either informed or not informed about their ability to control
the weather using EDA. The VR application allowed participants
to control the weather based on their EDA levels, with a range
from sunny (low EDA) to stormy (high EDA) conditions. After the

experiment, we surveyed the participants to see if they felt con-
trol over the weather, which was additionally analyzed. Two linear
mixed models revealed significant interaction effects between the
investigated groups and their time while experiencing biofeedback.
The biofeedback mechanism worked exactly the same for all partic-
ipants.

The EDA of informed participants was significantly lower at
the end of the biofeedback phase than those who were not in-
formed. This suggests that knowing that their stress levels and
their body could control the weather promotes their relaxation,
which is generally in line with the principle of biofeedback using
EDA [24, 26, 29, 31, 44]. However, higher EDA values of participants
that recognized that they also gained control were probably higher
due to their ability to test and “play around” with their influence
on the weather in the biofeedback phase. This becomes probably
evident in an initially similar progression to that in the informed
group, with the EDA measurements changing and increasing after
a certain time (between second 1020 and 1080). Participants who
were not able to control it showed lower values, indicating that
they just waited and relaxed until the end of the experiment. This
finding indicates that being informed about the biofeedback loop
does promote relaxation but not necessarily due to their ability to
control the weather.

These findings are important for a number of research branches
such as HCI, healthcare, psychology, game, and immersive applica-
tion design. While in HCI the awareness and belief in control can be
used for more effective and user-centered interactive systems deal-
ing with stress, in medical healthcare, the findings are significant for
practitioners focusing on non-pharmacological stress management
techniques. Understanding how awareness and belief in control in-
fluence physiological responses can inform psychological theories
and therapeutic practices, particularly in the context of biofeedback
and stress-coping mechanisms using placebo or control groups. For
cognitive researchers of interactive systems, the research offers
valuable insights into the mental aspects of stress management and
even could mean a methodological revision of typical stress tests
or study designs [9, 14, 16]. In the field of game design, particularly
in the development of emotion-adaptive games and playful experi-
ences [22], this research also provides a first step for understanding
game control mechanisms when integrating biofeedback.

4.1 Future Work
A deeper investigation into the psychological mechanisms underly-
ing the observed effects of information for biofeedback awareness
is warranted. This could involve a more nuanced exploration of the
cognitive processes that participants engage in when they are in-
formed about their control over the biofeedback loop. The lack of a
significant three-way interaction between informed control, control
awareness, and time suggests caution in interpreting these results
and further highlights the need for more research. Particularly, the
role of perceived and informed control in biofeedback effectiveness
merits further exploration. For example, believing in the benefits of
a biofeedback system that is not functional may change the EDA
signals since the participants believe in physiological control [15].
Similar to the study by Segreto [36], future studies could manip-
ulate the level of control participants have over the biofeedback
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system, examining how varying degrees of control influence EDA.
Subjective experiences of stress and relaxation could further help
to understand the phenomenon. This could be complemented by
measuring additional physiological markers of stress and relaxation,
such as heart rate (HR), heart rate variability (HRV), breathing, or
cortisol levels, to provide a more comprehensive understanding of
the process of closing the biofeedback loop.

The temporal dynamics of EDA responses indicate the need
for a more granular analysis of EDA fluctuations over time. Subse-
quent research could also employ time-series analysis or subsequent
methodologies to examine dynamics over time in greater detail, po-
tentially revealing more patterns or other predictors of participant
responses to biofeedback. Both control-awareness groups asked
after the experiment to assess their belief of control happened to be
two almost equally sized group split of a perceiving a system that
worked the same for all participants. Future research should specif-
ically control this factor in further studies. Additionally, the impact
of individual differences on biofeedback outcomes is an area ripe
for investigation. Factors such as personality traits, gender, prior
experience with biofeedback or meditation, and individual stress
levels could be examined to determine their influence on the effec-
tiveness of biofeedback interventions. As our sample skew toward
male computer science or mechanical engineering students, we also
recommend to further consider a more diverse and heterogeneous
group of participants.

4.2 Conclusion
The study’s findings with 30 participants offer early insights into
our research investigating the interplay between information, belief
of control, and physiological responses in a biofeedback experiment
using EDA within immersive environments. The results indicate
that being informed about the biofeedback loop’s control over the
environment significantly influences participants’ EDA, leading
to lower stress levels. An effect is also notable when considering
that the belief in control, irrespective of actual information pro-
vided, also impacts EDA, albeit in a different manner. Regardless of
being informed, participants who believed they had control exhib-
ited higher EDA levels, probably due to their engagement or will
for experimentation with the perceived control over the environ-
ment. The subjective feedback further underscores this complexity,
revealing a disparity between participants’ perceived stress or re-
laxation and their actual physiological responses. This difference
also suggests that individuals may not always accurately assess
their cognitive load or stress levels. More research is needed to
understand the underlying mechanisms.
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