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Abstract: The lack of social acceptability for wearable devices such as orthopedic foot
orthoses can lead to irregular usage and missed health benefits, as shown in prior studies.
While AI-generated designs have been explored for prototyping aesthetic hand orthoses,
their impact on social acceptability, particularly for foot orthoses, remains unknown. The
current state of research is limited, as no empirical evidence exists on whether AI-designed
orthoses influence acceptance, nor has the role of customized generative pre-trained trans-
formers (GPTs) and specific prompting strategies been examined in this context. To address
these gaps, we conducted two mixed-methods studies to investigate (1) the impact of AI-
generated orthosis designs on social acceptability compared to existing orthopedic products
and development concepts and (2) how a customized GPT and different prompt keywords
influence acceptance. Our results show that AI-generated designs significantly enhance
social acceptance across orthotic categories. Furthermore, we found that personalized
GPTs and targeted prompt keywords significantly influence user perception. Overall, our
findings highlight the potential of using AI to create socially acceptable design solutions
for wearable technology and offer new applications for future smart devices. We contribute
to generative AI in product design and provide concrete recommendations for optimizing
prompting strategies to enhance social acceptance.

Keywords: artificial intelligence; generative AI; ChatGPT; text-to-image; human-centered de-
sign; human–computer interaction; product design; social acceptance; foot orthoses; wearables

1. Introduction
Orthopedic foot orthoses are standardized devices that are essential for the rehabilita-

tion of patients recovering from injuries or managing chronic foot diseases [1]. The designs
of these assistive devices differ, featuring orthoses with varying leg lengths, bandages, and
foot drop orthoses, each customized for particular medical purposes [2]. Each category
of orthotic products is designed to support patients with different medical needs and
mobility requirements [3]. This product diversity requires highly personalized designs
to meet the specific demands of different health conditions and patient preferences [4].
While technical function is essential for medical effectiveness, aesthetics and usability are
also key elements in the design of orthopedic foot orthoses to promote patient acceptance
and support successful use and rehabilitation outcomes [2]. For example, a study by
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Ghoseiri and Bahramian [5] investigated user satisfaction with orthotic devices among
293 participants, revealing that concerns related to the appearance of the devices often
resulted in low satisfaction rates. Furthermore, a systematic literature review by Swinnen
and Kerckhofs [6] analyzed ten studies involving 1576 patients and highlighted the critical
role of aesthetics in the compliance of wearing lower limb orthotic devices. The review
found that a notable number of patients avoid wearing their devices regularly due to their
“cosmetically unacceptable” appearance, highlighting the “large importance” of aesthetics
in patients’ decisions to wear these devices. This underscores the significant impact of
aesthetics on device adoption and user perception [7]. However, the design processes of
these standardized devices frequently rely on traditional methods that limit adaptability
and patient involvement, leading to compliance issues [8]. This dissatisfaction can lead to
inconsistent use of standardized orthopedic aids and missed health benefits, as highlighted
by previous work [9].

Current advancements in sensor technology offer the potential to transform these con-
ventional orthoses into smart products, commonly known as wearable electronic devices,
which can monitor specific health parameters [10]. In theory, the creation of smart orthotic
footwear could enhance the rehabilitation process by enabling the continuous monitoring
of various conditions while also extending health benefits [11]. However, the conceptual
development and integration of such advanced technologies also bring new challenges for
product design that must be addressed to ensure patient acceptance in line with medical
requirements [12].

A systematic literature review by Orlando et al. [13] highlighted that there is a signif-
icant need for improvement in lower extremity orthotic devices. A list of five main user
needs (function, expression, aesthetics, accessibility, and other) and the corresponding sub-
items for the use of lower limb orthoses was compiled. It was concluded that improvements
in the design, prescription, and implementation of these devices are crucial to improve
utilization and achieve greater user satisfaction. Therefore, incorporating user perspectives
and identifying their needs in the development process is essential to ensure a high level
of user acceptance for smart technologies. For example, Van der Wilk et al. [14] applied a
user-centered design approach and conducted a qualitative study with eight participants
in focus groups to investigate patients’ perspectives on improving the design of an ankle
foot orthosis (AFO). The three main themes identified by the patients, walking and standing
ability, activities, and AFO characteristics, were highlighted as the most relevant aspects for
future developments.

To address these design challenges, the use of image-generative artificial intelli-
gence (AI) applications in the design process of future developments presents a novel
approach [15]. As shown by Suessmuth et al. [16], generative AI can support concept
creation in footwear design by actively involving users in the design process and tailoring
products to their preferences, highlighting valuable potential for the industry. Building on
this idea, the emerging trend of rapid image creation with tools such as DALL-E [17] from
OpenAI provides new opportunities for generating design concepts based on user-defined
prompts. The use of such technologies could support the iterative design process within
the structured product development of orthopedic orthoses. However, the impact of AI-
generated wearable designs on social acceptance remains an open question. To address this
research gap, we formulate the following three research questions (RQs):

• RQ1: How does the use of AI-generated designs impact the perceived social
acceptability of foot orthoses compared to conventional orthopedic products or
research developments?
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• RQ2: How does the category of orthotic products influence the social acceptance of
foot orthoses, comparing categories such as short-leg orthoses, high-leg orthoses, foot
bandages/textiles, and foot drop orthoses?

• RQ3: How does a custom generative pre-trained transformer (GPT), trained on data for
personalized orthoses, impact social acceptance, and what effect do specific keywords
in the prompt structure (such as “social acceptance” or “sporty design”) have on
this acceptance?

While aspects such as biocompatibility and manufacturability are critical in the de-
velopment of orthopedic devices, our study focuses on the visual perception and social
acceptance of AI-generated designs. These factors are particularly relevant for end users,
whereas material and production requirements fall within the domain of technical experts,
who were not the target group of this study. In addition, current generative AI models are
primarily suitable for the conceptual phase of designs, as they are generally unable to take
technical manufacturability into account, which is why specialized technical expertise is
required [18].

Therefore, we conducted two studies to investigate the influence of AI-generated
orthoses designs on social acceptance. The first study aimed to assess the potential of
AI integration by evaluating whether AI-generated orthoses achieved higher acceptance
ratings compared to conventional products. The second study compared the output of
a custom GPT and ChatGPT-4 and investigated the effects of specific keywords in the
prompts on acceptability ratings. Based on the findings, we provide recommendations
for refining text prompts and discuss the implications of these enhancements for future
developments in wearable design.

We aim to contribute to the field of human-centered design using generative AI
by expanding the knowledge of socially acceptable smart foot orthosis (SFO) designs
and investigating the role of image-generative AI in the product development process.
Accordingly, this paper highlights the following three main contributions:

1. We introduce a novel approach that leverages image-generative AI to enhance the
customization and aesthetic appeal of foot orthosis designs, increasing their alignment
with user requirements and visual attractiveness.

2. Our research provides empirical evidence demonstrating that AI-generated orthosis
designs significantly enhance social acceptability among users. This potential could
be utilized to create widely accepted design solutions for other products as well.

3. We offer a comprehensive set of future recommendations for integrating AI into the
orthotic design, aiming to refine the prompt design process to ensure that the resulting
designs meet product requirements and patient design expectations.

2. Related Work
This section examines generative AI techniques, particularly text-to-image and image-

to-image generation, and explores their potential applications in product design. Following
this, we discuss how design influences the social perception of wearable devices. Finally,
we summarize the identified research gaps and outline how our studies intend to contribute
to this research field.

2.1. Generative AI: Image-to-Image and Text-to-Image Creation

Generative AI is a subset of AI that uses trained models from deep learning, a key
component of machine learning, to generate new content from collected data. It employs
trained multi-layer artificial neural networks that can identify patterns in datasets and
make decisions for data generation. Therefore, the use of AI image-generation tools enables
rapid prototyping from a simple sketch to a 3D prototype, whether virtual or physical [19].
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One example is the image generation tool DALL-E from OpenAI, which is a separate tool
from a GPT chatbot—ChatGPT—based on an large language model (LLM). DALL-E is a
transformer model [20] and enables text-to-image or image-to-image generation via text or
image prompts.

Text-to-image generation transforms textual information into pixel-based image data.
This method can be used in product development to create initial concepts based on specific
product requirements [21]. However, achieving appropriate outputs requires an iterative
approach to prompt engineering. Therefore, White et al. [22] proposed a prompt pattern
catalog to improve prompt engineering with ChatGPT. They stated that specifying personas
and templates allows the model to adopt specific roles and ensures that output quality
and consistency are tailored to user needs. Furthermore, they discussed prompt patterns
for visualizations that enable ChatGPT to generate specific textual outputs, which can
subsequently be used to create visualizations with tools like DALL-E. Additionally, a study
by Liu and Chilton [23] highlighted the importance of prompt engineering in text-to-image
generation and proposed guidelines to achieve better outcomes.

While text-to-image generation uses text input to create a visual output, image-to-
image generation requires visual data from an existing image to create a visual output. The
use of image-to-image generation is based on Generative Adversarial Networks (GAN) [24],
which enable image generation through the interaction of two neural networks: a generator
and a discriminator. This technology can be used to refine initial sketches or create design
variations, improving the iterative design process.

2.2. Generative AI in Product Design

Image-generative AI enables new possibilities for designers in product development
through creativity-expanding iterations of design sketches [25]. These tools could be
used in the styling process for various applications [26–29]. However, the application of
image-generative AI tools in the development of orthotic devices has not yet been realized.

Nonetheless, initial research projects demonstrate promising results from using AI
throughout the design process, from initial concept to final manufacturing via 3D print-
ing [30,31]. For example, Popescu [30] proposed orthosis_GPT, a custom version of ChatGPT
trained with predefined configurations to support the preliminary design of a wrist–hand
orthosis. Based on an iterative design process driven by prompt engineering, the wrist–
hand orthosis was finally 3D-printed. This workflow illustrates the potential of using AI in
the creation of orthosis designs and subsequent processing for 3D printing. Furthermore,
Bartlett and Camba [31] presented examples of generative AI in product design, showcas-
ing the creation of shoes with DALL-E. The generated image output was used by designer
Kedar Benjamin to overlay the topology onto this image with additional software and
to create a 3D model for 3D printing. Finally, a significant limitation identified was that
although the printed versions appeared similar, manual input from designers was necessary
to create a topologically optimized 3D model. Additionally, Chiou et al. [25] conducted a
study with six designers to explore the collaboration between designers and generative AI
in creating new ideas. It was shown that AI image generation offers new possibilities for
artistic expression and inspiration with great potential for future contributions in the design
field. However, the study also highlighted future challenges and raised questions about
copyright and social justice. In conclusion, these studies established a novel approach for
creating AI-based designs that meet user requirements and enable the progression from
initial design to final 3D printed prototypes.
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2.3. Influence of Design on the Social Perception of Wearable Devices

In the field of Human-Computer Interaction (HCI), the influence of factors such as
social perception and comfort on wearable devices is extensively researched [32–35]. Re-
search demonstrates across multiple studies that design is crucial for the acceptance and
continued use of wearables [36–38]. For instance, a focus group study by Canhoto and
Arp [37] investigated the influence of factors for the sustainable use of various Internet of
Things (IoT) health and fitness wearables. The study showed that designing distinctive
devices enhances visibility, which influences user acceptance and encourages them to
continue wearing the device. In addition, Adapda et al. [39] found that social acceptance
can vary greatly depending on the type of smart device as well as the user group. Fur-
thermore, Liao et al. [40] showed that smart insoles placed in shoes received the highest
comfort ratings compared to other electronic wearable devices that were directly attached
to the body. However, social acceptance can be influenced by various factors, including
gender and cultural aspects [33]. Therefore, designers must consider a wide range of user
preferences to develop widely accepted product designs.

In HCI research, several standardized questionnaires exist for the measurement of
social impact from interactive and ubiquitous wearable technologies (e.g., Technology
Acceptance Model (TAM) [41], Unified Theory for Acceptance and Use of Technol-
ogy (UTAUT) [42], Stereotype Content Model (SCM) [43], or the Wearable Acceptability
Range (WEAR) [44]). For instance, Davis et al. [41] proposed the TAM model, which was
later updated to TAM 3.0 by Venkatesh and Bala [45], an enhanced version for a more
comprehensive user understanding of technology adoption. In order to summarize various
competing models with differing acceptance factors, Venkatesh et al. [42] compared eight
models for measuring technology acceptance and validated UTAUT as a unified theoretical
model. However, the literature indicates that while acceptance models such as TAM or
UTAUT are suitable for evaluating technological acceptance itself, they are not “clearly
applicable” to technologies that are directly worn on the body [36].

For this reason, the WEAR scale developed by Kelly [44,46] serves as an effective tool
for measuring the social acceptability of wearable devices or prototypes. For example, Kelly
and Gilbert [36] applied the WEAR scale in their study, demonstrating that medical neces-
sity enhances the social acceptability of wearable devices, as it underscores the wearer’s
dependence on the device. However, they also highlighted the discrepancy in the literature
between the stigmatization of medical devices and the recognized medical necessity of
such assistive technologies. To address existing stereotypes and social perceptions, the
SCM questionnaire by Fiske et al. [43] could be utilized, as it assesses these factors across
two perceived dimensions: competence and warmth [47]. Previous work has applied this
model to evaluate mobile devices [48] and has confirmed its effectiveness across different
cultures [49]. A study by Sehrt et al. [50] utilized the SCM and WEAR scales to investi-
gate the social acceptability of wearable devices based on their body location. The results
showed that placement on the ankle received the lowest SCM ratings, indicating poorer
acceptability compared to upper body locations. These findings support the statement that
the social perception of wearable devices varies for different body locations [51–53]. Over-
all, the use of these questionnaires revealed current problems with the social acceptance of
various devices and that better design is needed to achieve greater acceptance in the future.

2.4. Research Gaps

AI image generation opens up new possibilities for creativity, assisting designers
in progressing from sketches to 3D models through text-to-image and image-to-image
generation techniques. Initial studies have demonstrated that AI can be used effectively in
product design by enabling the development of concepts such as wrist–hand orthoses and
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the subsequent 3D printing of prototypes. However, the impact of AI-generated aesthetic
designs on the social acceptance of orthopedic foot orthoses remains unknown.

To evaluate stereotypes and social acceptance of wearables, the SCM and WEAR scales
are often used as validated questionnaires. Previous research using these questionnaires
has shown that wearables attached to the ankle typically receive lower acceptance rates
compared to those worn on other body parts. Consequently, it remains unclear how
orthopedic footwear is perceived by users and which aesthetic design adjustments are
necessary to enhance acceptance for future smart developments.

By addressing these research gaps, we aim to contribute to the field of socially accept-
able wearable orthopedic footwear design. Additionally, we aim to explore the potential of
AI in future design processes to develop aesthetically acceptable design concepts. To this
end, we conducted two studies to investigate the effects of AI-generated designs on the
social acceptance of orthopedic footwear.

3. Materials and Methods
3.1. Study 1: The Impact of AI-Generated and Conventional Orthotic Designs Across Device
Categories on Social Acceptability

To examine the influence of AI-generated orthotic designs on social acceptability, this
study compared different AI-created designs with conventional orthopedic products and
research-based developments. Additionally, we analyzed how various orthotic device
categories affect acceptance. Social acceptability was quantitatively assessed using the
WEAR scale, while stereotypical perceptions were evaluated through the SCM model,
measuring warmth and competence ratings. To complement these findings, qualitative
feedback provided deeper insights into user needs and preferences.

3.1.1. Study Design

A total of 161 participants were recruited through mailing lists via our institution
and within personal networks. We conducted an online survey using a two-factorial
within-subject design to investigate how different design types and product categories of
orthopedic foot orthoses influence social acceptability. The two independent variables were
DESIGN TYPE and ORTHOTIC CATEGORY. The variable DESIGN TYPE includes three indi-
vidual levels: Generative AI, Orthopedic products, and Development concepts. The ORTHOTIC

CATEGORY includes four levels: Short-Leg Orthoses, High-Leg Orthoses, Foot Bandages/Textiles,
and Foot Drop Orthoses. We hypothesized that the perceived social acceptability of foot
orthoses will be positively influenced by Generative AI concepts compared to the traditional
Orthopedic products and Development concepts. We also hypothesized that the perception of
acceptability would vary strongly within the ORTHOTIC CATEGORY, as different device
types may elicit different user reactions depending on their design and visibility.

3.1.2. Stimuli

Four different categories of orthopedic foot orthoses (Short-Leg Orthoses, High-Leg
Orthoses, Foot Bandages/Textiles, and Foot Drop Orthoses) were chosen to cover the medical
needs of different foot conditions. We selected six different images for each ORTHOTIC

CATEGORY, resulting in a total of twenty-four stimuli (see Figure 1).
Each ORTHOTIC CATEGORY included two images of Generative AI orthoses, two Ortho-

pedic products, and two orthoses from Development concepts. The selection of two different
orthoses for each DESIGN TYPE ensured a diverse representation of design variations within
each ORTHOTIC CATEGORY. All images were presented with a white background and
consistent positioning of the orthosis to ensure comparability. Adobe Photoshop version
2023 24.0.1 was used for manual adjustments, such as rotating the orthosis and creating



Appl. Sci. 2025, 15, 4132 7 of 29

a transparent background where necessary. Each image contained only the orthosis and
some visible parts of the lower leg to maintain focus on the orthotic device itself.

Two approaches were used for Generative AI designs: text-to-image and image-to-
image generation. Text-to-image generation was applied using DALL-E 3, which is based
on a transformer architecture, from ChatGPT-4 [54] (OpenAI). Text prompts were created
to design smart orthoses based on the type of orthosis and its medical functions. These
typically feature a gray device color on a white background. Additionally, the prompts
were extended to include small black boxes on the sides of the orthoses, which serve as
placeholders for electronic components to enable smart functions. For image-to-image
generation, images of medical orthoses were used as prompts to create realistic designs.
The following prompt was used and iteratively refined during re-prompting: “Generate
an image of a foot orthosis based on the shape of the reference image. The orthosis should provide
full protection for the lower leg and foot, consisting of two rigid housing parts that enclose the
leg and are secured with Velcro straps. The orthosis should be gray and displayed against a white
background. Additionally, a small box should be integrated into the orthosis to house sensors for
smart functionalities”. The images of Orthopedic products are based on standardized med-
ical devices that are available in online shops or medical supply stores: VACOpedes [55],
AIRCAST® AIRSELECT™ Short Walker [56], VACOcast Diabetic Boot [57], AIRCAST® AIRS-
ELECT™ Achilles Walker [58], FastProtect Malleo [59], The BetterGuard [60], WalkOn Reaction
Lateral [61], and ofa Push ortho Fußheberorthese AFO [62]. These products are currently used
by patients with foot conditions and represent state-of-the-art solutions. The Development
concepts stimuli include various devices proposed in research projects [63–66], 3D-printed
prototypes published on the web [61,67,68], and a self-created 3D CAD-design (C4-DEV2).

Orthotic Category

Category 1:
Short-Leg Orthoses

Category 2:
High-Leg Orthoses

Category 3:
Foot Bandages / Textiles

Category 4:
Foot Drop Orthoses

D
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C1-ORT1 C1-ORT2 C2-ORT1 C2-ORT2 C3-ORT1 C3-ORT2 C4-ORT1 C4-ORT2

C1-DEV1 C1-DEV2 C2-DEV1 C2-DEV2 C3-DEV1 C3-DEV2 C4-DEV1 C4-DEV2

Figure 1. Overview of the 24 stimuli used in the online survey, categorized by the two independent
variables DESIGN TYPE and ORTHOTIC CATEGORY. The stimuli are arranged horizontally by the four
orthotic categories, Short-Leg Orthoses, High-Leg Orthoses, Foot Bandages/Textiles, and Foot Drop Orthoses,
and vertically by the three design types, Generative AI, Orthopedic products, and Development concepts.

3.1.3. Procedure

The study was conducted in accordance with the ethical standards for user studies
as required by our institution and received ethical approval from the German Society for
Nursing Science (No. 23-027). Participants were informed about the study’s purpose,
ethical procedures, data privacy, data anonymity, and the intended use of their data before
participation. Informed consent was obtained via the online platform before the start



Appl. Sci. 2025, 15, 4132 8 of 29

of the survey. Participants received a web link to our landing page, where they could
access the online survey, which was created using LimeSurvey. After signing the informed
consent form, participants were asked about demographic data, information about past
conditions, and prior knowledge of orthopedic footwear or smart orthoses. Following
this, participants received a brief introductory text for each orthotic category to prevent
major misinterpretations and to provide context for the device and medical application.
Participants were then presented with the 24 stimuli in a randomized order. For each
stimulus, the corresponding picture was shown, and participants rated two statements
about social acceptance and aesthetic design expectations on a 7-point Likert scale. The
questions were “To which extent do you agree with the statement that the device is socially
accepted?” and “To what extent does the design meet your aesthetic expectations?”, with responses
ranging from totally unacceptable (1) to perfectly acceptable (7). In addition to the quantitative
questions, qualitative feedback was obtained via a free text entry question for each stimulus:
“What positive/negative aspects of the orthosis do you notice?”. Following this, the standardized
SCM and WEAR questionnaires were completed for each stimulus. After answering all
24 conditions, participants responded to concluding questions regarding any changes in
their perspective on orthoses, noting positive aspects, negative aspects, prior knowledge of
AI image generation, and any additional feedback. The average completion time for this
survey was 75 min.

3.1.4. Measures and Data Analysis

In this study, we used a mixed methods approach based on quantitative and qual-
itative feedback. Quantitative data were measured using the SCM and WEAR scales,
complemented by two seven-point Likert items assessing social acceptance and aesthetic
design expectations. These data were analyzed through descriptive and inferential statis-
tics. Additionally, qualitative feedback derived from participants’ free-text responses was
assessed using thematic analysis. The methods and data analysis procedures are described
in detail in the following paragraphs.

Quantitative: Stereotype Content Model (SCM)

The SCM questionnaire by Fiske et al. [43] was used to assess stereotypes and social
perceptions of various foot orthoses based on two perceived dimensions: warmth and
competence. This standardized questionnaire consists of nine items rated on a 5-point scale
ranging from not at all (1) to extremely (5). The competence dimension was evaluated using
five items (competent, confident, independent, competitive, and intelligent), each assessed by the
question “As viewed by society, how . . . are members of this group?”. Additionally, the same
question was used to assess the warmth dimension, consisting of four items: tolerant, warm,
good-natured, and sincere. For the data analysis, a two-factorial repeated measures (RM)
ANOVA was used.

Quantitative: Wearable Acceptability Range (WEAR)

To measure the social acceptability of wearable technology, the WEAR scale by
Kelly [44] was used. The WEAR scale (version 3) consists of 14 items, each rated on a
6-point scale ranging from strongly disagree (1) to strongly agree (6). Five of these 14 items
are reverse-scored. The total score was divided by 14 to obtain an average score, which can
be graded from extremely low social acceptance (1) to extremely high acceptance (6). An RM
ANOVA was used for data analysis, similar to the procedure used for the SCM scale.
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Quantitative: 7-Point Likert Scales

As described previously in Section 3.1.3, two questions were used to rate statements
about social acceptance and aesthetic design expectations on 7-point Likert scales. For the
evaluation, a non-parametric Aligned Rank Transform (ART) RM-ANOVA was applied.

Qualitative Feedback

Qualitative results from the free text entries were assessed using inductive thematic
analysis [69]. Anonymized data were transcribed, coded, and analyzed paragraph-wise to
identify categories and main themes. Two researchers were involved in the data analysis
process: one researcher transcribed and coded the data set independently, while the second
researcher reviewed the results for consistency.

3.2. Study 2: The Impact of GPT Customization and Prompt Keywords on the Social Acceptability
of AI-Generated Orthotic Designs

Based on our first study, which showed that AI-generated designs can increase the
social acceptance of orthopedic foot wearables, this study further explored the role of
prompt customization in shaping user perception. In particular, the first study revealed
that high-leg orthoses received the lowest acceptance ratings. Therefore, we examined
which factors in AI image generation could positively influence the acceptance of this
device category. While the initial study confirmed the potential of generative AI for orthotic
design, it also raised questions regarding the influence of specific keywords in the prompts
used and the application of customized GPTs. Furthermore, it remained unclear how the
inclusion of keywords related to user preferences would affect the perceived acceptability
of designs. To address this, our second study investigated the impact of various keywords
and the use of a personalized GPT tailored to specific patient and product requirements.
Previous research has demonstrated the influence of prompt structures and provided
recommendations for different user roles [22]. Building on this knowledge, we take one step
further and contribute to user-centered prompting strategies by incorporating keywords
that enhance the alignment between generated designs and user needs.

3.2.1. Study Design

In our second study, we conducted an online survey to investigate the effects of differ-
ent prompt keywords and GPT personalization on the social acceptability of AI-generated
high-leg orthosis designs. In total, 133 participants were recruited. The recruitment of
participants was conducted similarly to the first study, using mailing lists of our institution
and personal networks. A two-factorial within-subject design was carried out with the two
independent variables: GPT and KEYWORD. The variable GPT has two levels: ChatGPT
and OrthoticFootGPT. The variable KEYWORD has four levels: No Keyword, Usability, Social
Acceptability, and Sporty Design. The hypothesis of our second study is that perceived accept-
ability will significantly vary depending on the specific keywords used in the prompts and
that the inclusion of new keywords will positively influence this acceptability. Furthermore,
we hypothesize that a customized GPT will lead to more acceptable perceived outcomes
compared to the standardized model.

3.2.2. Stimuli

The model GPT-4 from ChatGPT was used to create the stimuli of high-leg orthoses,
which allows the creation of a custom GPT that can be configured according to the desired
response and outputs. DALL-E 3 image generation was activated in the configuration
interface of the customized GPT, and specific knowledge and instructions were provided as
input. However, OpenAI does not disclose specific details about its training configuration
or model architecture. The customized GPT named OrthoticFootGPT was described as a
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“generative design assistant to support the creation of socially acceptable foot orthoses”. To
generate a user-specific output, the knowledge base for the OrthoticFootGPT was customized
with a comprehensive set of data tailored to high-leg orthoses. This dataset included

• Product specifications: Detailed information on the aesthetic and functional aspects
of high-leg orthoses, such as material types, sizes and weight from data sheets
and guidelines.

• Usage instructions: Documents with instructions and user manuals for the use and
maintenance of these devices.

• Product images: Sample images of high-leg orthoses from various suppliers as a visual
reference for a realistic design.

• Research articles: Related articles providing insights into product design rules,
the concepts of accessibility/usability, and orthotic development were searched on
Google Scholar.

• Keyword definitions: Documents based on international standards and dictionary def-
initions provided explanations about the three keywords (usability, social acceptability,
and sport design) to guide the AI in generating contextually relevant content.

For both ChatGPT and OrthoticFootGPT, the following prompt was used as the founda-
tion for image generation: “Create a realistic image of a white-grey foot orthosis with a high shaft.
The orthosis should have stabilizing properties so that it can be worn for longer periods during reha-
bilitation. The background should be white and only show the leg with the orthosis”. In addition, a
sentence was added to the basic query for each keyword to tailor the images to the specific
definition. For example, for social acceptability: “The orthosis should ensure a high level of
social user acceptance by offering an attractive aesthetic design and high wearing comfort”.

To ensure realistic product images and avoid misinterpretation or misleading details,
the DALL-E editor interface was applied manually to ensure consistency across all images
(e.g., by removing the second leg or unrealistic features). Similar to the first study, each
image was manually adjusted using Adobe Photoshop to create transparent backgrounds
and ensure consistent foot rotation angles. All generated images are shown in Figure 2 and
the workflow for generating the visual stimuli is illustrated in Figure 3.

Keyword

Keyword 1:
No Keyword

Keyword 2:
Usability

Keyword 3:
Social Acceptability

Keyword 4:
Sporty Design

G
PT

C
ha

tG
PT

O
rt

ho
tic

G
PT

K1-GPT1 K1-GPT2 K2-GPT1 K2-GPT2 K3-GPT1 K3-GPT2 K4-AI1 K4-GPT2

K1-ORT1 K1-ORT2 K2-ORT1 K2-ORT2 K3-ORT1 K3-ORT2 K4-ORT1 K4-ORT2

Figure 2. Overview of the 16 stimuli used in the online survey, categorized by the two independent
variables, GPT and KEYWORD. The stimuli are arranged horizontally by the four keywords, No
Keyword, Usability, Social Acceptability, and Sporty Design, and vertically by the two GPTs: ChatGPT
and OrthoticFootGPT.
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Requirements
Definition

Technical 
Implementation

Conceptual Design 
Process

Iterative design process based on prompt engineering

Manufacturing Use & Evaluation 
Phase

OrthoticFootGPT was created as a 
custom GPT with domain-specific 

knowledge focused on orthotic 
device development, including 

DALL-E image generation. 

The base prompt was formulated to 
reflect user preferences and style 

goals. It was extended with specific 
keywords to influence design 

outcomes.

Text-to-Image generation was used 
based on the initial prompt to 
generate the orthotic device.

Designs were refined iteratively by 
manually selecting areas to 

improve and ensure a realistic 
visual output.

AI-Assisted Design Process

Iterative refinement: If the requirements are not met, the process returns to earlier phases.

Prompt CreationGPT Configuration Text-to-Image Re-Prompting

Figure 3. Schematic overview of the design generation workflow, including GPT customization,
prompt creation, and text-to-image generation.

3.2.3. Procedure

The study procedure was identical to that of the previous study, including ethical
approval by the German Society for Nursing Science (No. 23-027) and compliance with
institutional ethical standards. As in the previous study, participants were informed about
data privacy, anonymity, and the intended use of their data before providing informed
consent via the online platform. Participants signed an informed consent form and provided
demographic information along with details about their previous experience with image-
generative AI. The 16 conditions were then presented in a randomized order. At the end of
the survey, participants were asked to answer some open-ended questions about positive
and negative aspects of the designs, as well as additional feedback. The average time to
complete this survey was approximately 64 min.

3.2.4. Measures and Data Analysis

Similar to the first study, the quantitative data were collected using the standardized
SCM [43] questionnaire, the WEAR [44] scale, and two 7-point Likert items to assess the
social acceptance and aesthetic design expectations. Additionally, participants provided
qualitative feedback through free-text responses about positive and negative aspects of the
designs. The quantitative data analysis was conducted using descriptive and inferential
statistics. Qualitative feedback was analyzed using inductive thematic analysis [69].

4. Results
4.1. Study 1

This section presents the characteristics of the study group (Section 4.1.1), fol-
lowed by the evaluation of quantitative results (Section 4.1.2). This includes the
Correlation of SCM and WEAR Ratings, assessments of Stereotype Content Model (SCM)
and Wearable Acceptability Range (WEAR) data, as well as the analysis of Seven-Point
Likert Scale ratings on device acceptance and aesthetic design expectations. The statistical
analysis was performed in R using the package rstatix [70]. Qualitative results obtained
through thematic analysis are documented in Section 4.1.3.
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4.1.1. Participants

A total of 80 out of 161 participants (31 female, 48 male, and 1 divers) completed the
online survey and were included in the data analysis. Participants’ ages ranged from 19 to
77 years (M = 30.62, SD = 13.69). The participants had diverse educational backgrounds and
came from seven different nationalities. Occupations of participants included (N = 1) each
in natural sciences, healthcare, and crafts; (N = 2) each in law and administration; (N = 3)
each in management and social work; (N = 5) in services; (N = 20) in other professions; and
(N = 42) in engineering. Twenty-five participants reported having foot conditions, with
sixteen of these in the past and nine currently. In total, 14 had chronic issues and eleven
had acute conditions. Overall, 21 participants reported wearing orthopedic aids, including
insoles (N = 11), bandages (N = 5), high-leg orthoses (N = 4), and short-leg orthoses (N = 1).
In response to the question of whether the participants had previously heard of the term
“smart orthoses”, 51 responded “no”, and 29 responded “yes”. Twenty-nine participants
were aware of generative AI image generation, twenty-eight had actively used it, and
twenty-three had no prior knowledge of the technology.

To investigate whether participant demographics influenced the results, we conducted
an ART ANOVA, which showed no statistically significant main or interaction effects of
gender, prior AI knowledge, or past orthopedic conditions on SCM, WEAR, and Likert
scores (all p > 0.05). These results show that demographic factors did not systematically
influence the ratings of the participants.

4.1.2. Quantitative Results
Correlation of SCM and WEAR Ratings

A Pearson correlation analysis was conducted to assess the relationship between
SCM (means of warm and competence data) and WEAR ratings. A statistically significant
moderate positive correlation was found between the Euclidean length of the warmth–
competence vector and the WEAR scores, r(958) = 0.453, p < 0.001, with a 95% confidence
interval of (0.402, 0.502). This result confirms the findings from Schwind and Henze [71]
that social acceptance ratings correlate with combined competence and warmth data.

Stereotype Content Model (SCM)

The Shapiro–Wilk normality test indicated no normal distribution (only selected SCM
competence data showed p ⪰ 0.05, while all other stimuli for SCM competence and warmth
had p < 0.05). Therefore, a non-parametric two-factorial ART RM-ANOVA was conducted
to determine the effects of DESIGN TYPE and ORTHOTIC CATEGORY on SCM competence
and warmth.

For the SCM competence data, statistically significant main effects were found for
the ORTHOTIC CATEGORY, F(3, 869) = 56.752, p < 0.001, η2

p = 0.464 (large effect size),
and DESIGN TYPE, F(2, 869) = 9.931, p < 0.001, η2

p = 0.092 (medium effect size). How-
ever, no interaction effect was found between ORTHOTIC CATEGORY × DESIGN TYPE,
F(6, 869) = 1.038, p = 0.399, η2

p = 0.031 (small effect size).
For the SCM warmth data, statistically significant main effects were identified for

the ORTHOTIC CATEGORY, F(3, 869) = 3.201, p = 0.023, η2
p = 0.278, and DESIGN TYPE,

F(2, 869) = 4.493, p = 0.012, η2
p = 0.265, both with large effect sizes. However, the

interaction effect of the ORTHOTIC CATEGORY × DESIGN TYPE was not significant, with
F(6, 869) = 1.055, p = 0.388, and η2

p = 0.202 (large effect size).
Post hoc comparisons using Wilcoxon signed-rank tests with Bonferroni correction

revealed significant effects in SCM competence and warmth data, as documented in Table 1.
Figure 4 displays the mean values of perceived warmth and competence for each of the
three DESIGN TYPES within each of the four ORTHOTIC CATEGORIES. Additionally, the
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figure also presents a comparison across the four ORTHOTIC CATEGORIES within the SCM
model to highlight differences in the stereotypical perceptions of these devices.

Table 1. Pairwise comparisons of SCM competence and warmth ratings within orthotic categories
and design types. Significance codes: * (p < 0.05), ** (p < 0.01), *** (p < 0.001), **** (p < 0.0001),
ns = not significant.

SCM Competence SCM Warmth

Pairwise Comparisons n1 n2 Stat. p padj. Sig. Stat. p padj. Sig.

Short-Leg Orthoses—High-Leg Orthoses 240 240 10094 0.057 0.343 ns 6820 0.612 1 ns
Short-Leg Orthoses—Bandages/Textiles 240 240 2997 <0.001 <0.001 **** 5401 0.005 0.03 *
Short-Leg Orthoses—Foot Drop Orthoses 240 240 5367 <0.001 <0.001 **** 6286 0.993 1 ns
High-Leg Orthoses—Bandages/Textiles 240 240 2846 <0.001 <0.001 **** 5724 0.002 0.013 *
High-Leg Orthoses—Foot Drop Orthoses 240 240 4640 <0.001 <0.001 **** 5904 0.360 1 ns
Bandages/Textiles—Foot Drop Orthoses 240 240 11938 <0.001 <0.001 **** 7802 0.044 0.265 ns

Generative AI—Development 320 320 22421 <0.001 <0.001 **** 15445 <0.001 <0.001 ***
Generative AI—Orthopedic products 320 320 21927 <0.001 <0.001 **** 13268 0.191 0.573 ns
Development—Orthopedic products 320 320 16596 0.928 1 ns 9968 0.003 0.008 **
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Figure 4. SCM ratings of perceived competence (x-axis) and warmth (y-axis) for each of the four
ORTHOTIC CATEGORIES. In the upper row, the four quadrants are assigned as follows, from left
to right: (a) Short-Leg Orthoses, (b) High-Leg Orthoses, (c) Foot Bandages/Textiles, and (d) Foot Drop
Orthoses. The mean values for the three DESIGN TYPES are shown in separate colors: red (Generative
AI), blue (Orthopedic products), and yellow (Development concepts). The lower quadrant (e) contains
the SCM mean values for each ORTHOTIC CATEGORY: Short-Leg Orthoses (purple), High-Leg Orthoses
(orange), Foot Bandages/Textiles (brown), and Foot Drop Orthoses (green). The rectangles represent the
95% confidence interval.
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Wearable Acceptability Range (WEAR)

The Shapiro–Wilk test for normality indicated that the data are not normally dis-
tributed (p = 0.003). An ART RM-ANOVA showed statistically significant main effects
for the ORTHOTIC CATEGORY, F(3, 869) = 39.949, p < 0.001, η2

p = 0.423 (large effect size),
and DESIGN TYPE, F(2, 869) = 17.677, p < 0.001, η2

p = 0.178 (large effect size), but no
interaction effect for ORTHOTIC CATEGORY × DESIGN TYPE, F(6, 869) = 1.372, p = 0.223,
η2

p = 0.048 (small effect size).
Bonferroni corrected pairwise comparisons were conducted using Wilcoxon signed-

rank tests and revealed significant effects between Generative AI × Development concepts
(padj. < 0.001), Generative AI × Orthopedic products (padj. < 0.001), and Development con-
cepts × Orthopedic products (padj. = 0.021). Furthermore, pairwise comparisons between
ORTHOTIC CATEGORIES revealed five significant effects, which are summarized in Figure 5.

p<0.001 p<0.0001 p<0.0001
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Wearable Acceptability Range (WEAR)

Figure 5. This graph shows the results of the WEAR ratings. The four categories are listed on the
x-axis: short-leg orthoses, high-leg orthoses, foot supports/textiles and foot drop orthoses, and the y-axis
represents the corresponding scores on the WEAR scale. The boxplots are color-coded to differentiate
the design types: Generative AI in red, Orthopedic products in yellow, and Development concepts in blue.
Asterisks indicate significance levels: * (p < 0.05), ** (p < 0.01), *** (p < 0.001), **** (p < 0.0001).

Seven-Point Likert Scale

The evaluations of the two statements regarding device acceptance and aesthetic
design expectations were not normally distributed (p < 0.05).

A non-parametric two-factorial ART-ANOVA on rated device acceptance statements re-
vealed a significant main effect for the ORTHOTIC CATEGORY, F(3, 869) = 24.717, p < 0.001,
η2

p = 0.336, and DESIGN TYPE, F(2, 869) = 24.077, p < 0.001, η2
p = 0.247, as well as a

significant interaction effect for ORTHOTIC CATEGORY × DESIGN TYPE, F(6, 869) = 4.068,
p < 0.001, η2

p = 0.142 (each with a large effect size).
Furthermore, the two-factorial ART-ANOVA on rated aesthetic design expectations

showed a significant main effect for the ORTHOTIC CATEGORY, F(3, 869) = 43.730,
p < 0.001, η2

p = 0.407, and DESIGN TYPE, F(2, 869) = 21.613, p < 0.001, η2
p = 0.185 (both

with large effect size), as well as a significant interaction effect for ORTHOTIC CATEGORY ×
DESIGN TYPE, F(6, 869) = 32.743, p = 0.012, and η2

p = 0.079 (medium effect size).
Pairwise comparisons using Bonferroni-corrected Wilcoxon signed-rank tests revealed

statistically significant differences within ORTHOTIC CATEGORIES and DESIGN TYPES, as
documented in Table 2. The results of the Likert scale evaluations are displayed in Figure 6.
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Table 2. Post hoc pairwise comparisons within orthotic categories and design types for Likert
scores of device acceptance and design expectations. Significance codes: * (p < 0.05), ** (p < 0.01),
*** (p < 0.001), **** (p < 0.0001), ns = not significant.

Device Acceptance Design Expectation

Pairwise Comparisons n1 n2 Stat. p padj. Sig. Stat. p padj. Sig.

Short-Leg Orth.—High-Leg Orth. 240 240 7901 0.148 0.888 ns 7804 0.771 1 ns
Short-Leg Orth.—Bandages/Textiles 240 240 4630 <0.001 <0.001 **** 2854 <0.001 <0.001 ****
Short-Leg Orth.—Foot Drop Orth. 240 240 7456 0.568 1 ns 7370 0.024 0.143 ns
High-Leg Orth.—Bandages/Textiles 240 240 3583 <0.001 <0.001 **** 3426 <0.001 <0.001 ****
High-Leg Orth.—Foot Drop Orth. 240 240 7032 0.712 1 ns 5688 0.004 0.022 *
Bandages/Textiles—Foot Drop Orth. 240 240 11454 <0.001 <0.001 **** 13938 <0.001 <0.001 ****

Generative AI—Development 320 320 21972 <0.001 <0.001 **** 24376 <0.001 <0.001 ****
Generative AI—Orthopedic products 320 320 13612 0.237 0.711 ns 19850 <0.001 <0.001 ****
Development—Orthopedic products 320 320 7405 < 0.001 < 0.001 **** 12490 0.004 0.011 *
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Figure 6. This figure contains two boxplot diagrams, including the rated device acceptance (a) and
aesthetic design expectation (b) for the three DESIGN TYPES in each ORTHOTIC CATEGORY. The
x-axis lists the four categories: Short-Leg Orthoses, High-Leg Orthoses, Foot Bandages/Textiles, and Foot
Drop Orthoses. The y-axis represents the corresponding scores from the Likert rating. The boxplots
are color-coded to distinguish the design types: Generative AI in red, Orthopedic products in yellow,
and Development concepts in blue. Asterisks indicate significance levels: * (p < 0.05), ** (p < 0.01),
*** (p < 0.001), **** (p < 0.0001).

4.1.3. Qualitative Feedback

The axial coding procedure within inductive thematic analysis revealed three main
themes: Aesthetic Design, Technical Properties, and Usability and Comfort. Each theme includes
both positive and negative perspectives and reflects participant feedback in four ORTHOTIC

CATEGORIES and three DESIGN TYPES.
Overall, perceptions of all four ORTHOTIC CATEGORIES vary strongly concerning

design, technical aspects, usability, and comfort. In general, the ORTHOTIC CATEGORIES of
Short-Leg Orthoses and High-Leg Orthoses are often associated with serious injuries. Short-Leg
Orthoses focus on “stabilization” (P83, P56) and “facilitates mobility for users with lower leg
injuries” (P110) but offer limited practicality in daily life. High-Leg Orthoses offer “robust
protection for serious injuries” (P27, P101, P110), but are “bulky” (P5, P24, P26, P81, P163),
“heavy” (P7, P22, P32, P119) and “restrictive” (P39, P83, P113), so their design “looks like a
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ski boot” (P144). Participants mentioned that these designs “could not be worn with regular
shoes” (P75), “leading to clothing restrictions” (P101). In contrast, Foot Bandages/Textiles are
perceived as “sporty” (P26, P39), “modern” (P34, P156), and “simple” (P56, P84) because of
their “unobtrusive design” (P8) and “can be worn with shoes” (P13, P46), but they are also
viewed as less suitable for serious injuries. Lastly, Foot Drop Orthoses have a “functional
design” (P161) which is “not conspicuous” (P56, P84, P163) and directly addresses medical
needs but is also seen as “too mechanical” (P8, P156), “not stable” (P21, P53, P73), and
“old-fashioned” (P13, P22).

Aesthetic Design: The aesthetic perception varies considerably across the three DE-
SIGN TYPES. The designs of Generative AI were perceived as “simple and unobtrusive” (P26,
P56, P66), with “subtle colors” (P43, P81), a “clean” (P156) and “modern design [that] could
be accepted as a replacement for shoes” (P75), which in some cases appear “futuristic” (P66).
However, some participants mentioned that the designs look “too technical” (P63) because
“the box looks too extreme” (P156). Orthopedic products were associated with a “minimalistic”
(P63, P142) and “classic design” (P8, P26), characterized by “neutral colors” (P81) that
“looks like a conventional product” (P162). However, these designs were criticized for being
visually “unesthetic” (P16, P56, P63)—described as “old-fashioned” (P13), “unfashionable”
(P161), “crude” (P107), “strange” (P13, P39), and “too big” (P32, P66)—and therefore per-
ceived as “less socially acceptable” (P16) because of their “robotic appearance” (P32, P119,
P144). The medical appearance of some orthoses could affect the wearer’s self-confidence
because the “impairment attracts attention” (P43). The Development concepts were generally
recognized as “innovative” (P75), “stylish” (P144), “futuristic” (P13, P34, P60, P64, P156),
and “it is nice that the color is different from other design” (P130), which makes them
appear “like a fashion item” (P13) and “do not look like a medical product” (P22). In
contrast, the bright color was also perceived negatively, along with the “cheap-looking
quality” (P63, P66, P72) and “ugly holes” (P84). Additionally, some designs were criticized
for their overly “mechanical appearance” (P8, P156) and the “excessive size of the box”
(P63), which could lead to “aesthetic acceptance issues” (P24).

Technical Properties: The technical properties of Generative AI designs were recog-
nized for “technology integration” (P152) as an “electronic device” (P119). However, some
of these technical functions were also negatively considered for their “complexity and the
need for regular maintenance or charging” (P152). Orthopedic products are recognized for
“longevity and low-maintenance” (P109), which “provides strong support and stability for
the foot and ankle” (P120) because they “immobilize the ankle and foot” (P27), making
them reliable for medical use and effective in the rehabilitation of severe injuries. Although
the Development concepts featured “lighter” (P22, P25) and “simpler designs” (P5, P161)
for “improved mobility” (P110), they were “not stable” (P53, P160) enough to support
more serious medical needs. Participants expressed concerns about “durability under
heavy loads” (P110), “lack of strength/stiffness” (P101), and the technical efficiency of
these designs.

Usability and Comfort: The usability and comfort of the three DESIGN TYPES resulted
in contrary user reactions, revealing strengths and weaknesses in product design. Generative
AI designs faced criticism for certain elements, such as “visible toes” (P39, P72), and
raised concerns about “the longevity of materials . . . [because the] material could wear out
more quickly” (P152). Despite the technical advantages of the Orthopedic products, they
“can be bulky” (P141) “which can be uncomfortable during everyday activities” (P152),
and can reduce comfort over time because it “restricts freedom of movement” (P101).
Although some models are described as “comfortable” (P142, P162), there is criticism
due to insufficient air circulation because the “feet could sweat” (P84) which can lead to
“moisture and skin irritation” (P113). In contrast, it was noted that Development concepts
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are “easy to wear” (P164) and “suitable for everyday use” (P22), offering a practical and
“less intrusive” (P8, P161) alternative. However, participants also mentioned that it “can be
uncomfortable during long-term use” (P110).

4.2. Study 2

The study group characteristics are described in the Section 4.2.1. The quantitative
analysis is documented in Section 4.2.2, including the Correlation of SCM and WEAR
Ratings, Stereotype Content Model (SCM) ratings, Wearable Acceptability Range (WEAR)
data, and the analysis of the two Seven-Point Likert Scale ratings. The thematic analysis of
the qualitative responses is presented in Section 4.2.3.

4.2.1. Participants

In total, 54 out of 133 participants (27 female, 26 male, and 1 diverse) completed
the survey and were included in the data analysis. The age of the participants ranged
from 18 to 49 years (M = 23.30, SD = 5.02). The participants had different educational
backgrounds and came from nine countries. The participants’ occupations varied from
(N = 1) in healthcare; (N = 2) each in other services and natural sciences; (N = 3) each
in administration, social services, and management; (N = 5) in law; (N = 16) inother
professions; and (N = 19) in engineering. Twenty-six participants reported having foot
conditions; twenty had conditions in the past and six have current conditions. Of these,
17 were acute diseases and nine were chronic conditions. Eight of them used insoles, seven
used bandages, three used a low-leg orthosis, two used a plaster cast, two used a low-leg
orthosis, and one used a high-leg orthosis. A total of 20 have already used image-generative
AI, 19 participants have no experience with such tools, and 15 are only familiar with the
tools from hearsay.

Similarly to our first study, we conducted an ART ANOVA to examine the influence of
demographic factors. The results showed no statistically significant main or interaction
effects on SCM, WEAR, and Likert scores (all p > 0.05), indicating that demographic
variables did not influence participant ratings.

4.2.2. Quantitative Results
Correlation of SCM and WEAR Ratings

The Pearson correlation analysis showed a statistically significant correlation between
the Euclidean length of the SCM warmth-competence vector (means of warm and com-
petence data) and the WEAR scores: r(430) = 0.800, p < 0.001, with a 95% confidence
interval of (0.763, 0.831).

Stereotype Content Model (SCM)

The Shapiro–Wilk normality test indicated a significant deviation from normality for
SCM competence and warmth (both p < 0.0001). A non-parametric two-factorial ART
RM-ANOVA for the SCM competence data showed a statistically significant main effect for
GPT, F(1, 371) = 124.871, p < 0.0001, η2

p = 0.448, and for KEYWORD, F(3, 371) = 8.499,
p < 0.0001, η2

p = 0.142 (both with large effect size). However, no significant interaction
effect was found for GPT × KEYWORD, F(3, 371) = 1.198, p = 0.310, η2

p = 0.023 (small
effect size). For the SCM warmth data, a significant main effect was identified for GPT,
F(1, 371) = 62.461, p < 0.0001, and η2

p = 0.471 (large effect size). However, no significant
effect was found for KEYWORD, F(3, 371) = 1.282, p = 0.280, η2

p = 0.052, nor for the
interaction effect of GPT × KEYWORD, F(3, 371) = 1.267, p = 0.285, η2

p = 0.051 (both with
a small effect size). Post hoc comparisons using Wilcoxon signed-rank tests with Bonferroni
correction revealed significant effects in SCM competence and warmth data, as documented
in Table 3. The mean values of perceived warmth and competence are depicted in Figure 7.
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Table 3. Pairwise comparisons of SCM competence and warmth ratings within keywords and GPTs.
Significance codes: * (p < 0.05), ** (p < 0.01), *** (p < 0.001), **** (p < 0.0001), ns = not significant.

SCM Competence SCM Warmth

Pairwise Comparisons n1 n2 Stat. p padj. Sig. Stat. p padj. Sig.

No Keyword—Usability 108 108 1482 0.312 1 ns 868 0.337 1 ns
No Keyword—Social Acceptability 108 108 1943 0.482 1 ns 1331 0.605 1 ns
No Keyword—Sporty Design 108 108 748 <0.001 <0.001 **** 850 0.146 0.876 ns
Usability—Social Acceptability 108 108 2135 0.075 0.450 ns 1508 0.186 1 ns
Usability—Sporty Design 108 108 725 <0.001 <0.001 **** 914 0.221 1 ns
Social Acceptability—Sporty Design 108 108 764 <0.001 <0.001 **** 854 0.107 0.642 ns

No Keyword: ChatGPT—Orth.FootGPT 54 54 942 0.002 0.002 ** 1135 0.046 0.046 *
Usability: ChatGPT—OrthoticFootGPT 54 54 828 <0.001 <0.001 *** 994 0.004 0.004 **
Social Accept.: ChatGPT—Orth.GPT 54 54 777 <0.001 <0.001 **** 875 <0.001 <0.001 ***
Sporty Design: ChatGPT—Orth.FootGPT 54 54 830 <0.001 <0.001 *** 1069 0.016 0.016 *
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Figure 7. SCM ratings of perceived competence (x-axis) and warmth (y-axis) for each of the four
KEYWORDS. In the upper row, the four quadrants are assigned as follows, from left to right: (a) No
Keyword, (b) Usability, (c) Social Acceptability, and (d) Sporty Design. The mean values for two GPTS are
shown in separate colors: red (ChatGPT) and blue (OrthoticFootGPT). The lower quadrant (e) contains
the SCM mean values for each KEYWORD: No Keyword (purple), Usability (orange), Social Acceptability
(green), and Sporty Design (brown). The rectangles represent the 95% confidence interval.

Wearable Acceptability Range (WEAR)

The Shapiro–Wilk normality test indicated that the data is not normally distributed
(p < 0.0001). An ART RM-ANOVA showed statistically significant main effects for the
GPT, F(1, 371) = 109.325, p < 0.0001, η2

p = 0.450 (large effect size), and for KEYWORD,
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F(3, 371) = 6.270, p = 0.0003, η2
p = 0.123 (medium effect size). However, no interaction

effect was found for GPT × KEYWORD, F(3, 371) = 1.948, p = 0.121, and η2
p = 0.042 (small

effect size).
Bonferroni-corrected pairwise comparisons were conducted using Wilcoxon signed-

rank tests, which revealed statistically significant differences between No Keyword × Sporty
Design (padj < 0.0001), Usability × Sporty Design (padj = 0.0002), and Social Acceptability ×
Sporty Design (padj < 0.0001). The pairwise comparison between ChatGPT and OrthoticFoot-
GPT was statistically significant, with p < 0.0001. Pairwise comparisons between the GPT
and KEYWORD demonstrated statistically significant differences across all keywords: No
Keywords (padj. = 0.0004), Usability (padj. = 0.0002), Social Acceptability (padj. < 0.0001), and
Sporty Design (padj. = 0.009). The results of the WEAR scale are summarized in Figure 8.
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Figure 8. This graph shows the results of the WEAR ratings. The four Keywords are listed on the
x-axis, No Keyword, Usability, Social Acceptability, and Sporty Design, and the y-axis represents the
corresponding scores on the WEAR scale. The boxplots are color-coded to distinguish the GPT:
ChatGPT in red and OrthoticFootGPT in blue. Asterisks indicate significance levels: * (p < 0.05),
** (p < 0.01), *** (p < 0.001), **** (p < 0.0001).

Seven-Point Likert Scale

The Shapiro–Wilk normality test for the two statements on device acceptance and
aesthetic design expectations indicated no normal distribution (p < 0.0001).

A non-parametric two-factorial ART-ANOVA on rated device acceptance statements
revealed a significant main effect for the GPT, F(1, 371) = 90.864, p < 0.0001, η2

p = 0.442
(large effect size), and for KEYWORD, F(3, 371) = 3.081, p = 0.027, η2

p = 0.074 (medium
effect size), as well as an interaction effect for GPT × KEYWORD, F(3, 371) = 4.834,
p = 0.002, and η2

p = 0.111 (medium effect size).
The two-factorial ART-ANOVA on rated aesthetic design expectations showed a

significant main effect for GPT, F(1, 371) = 129.196, p < 0.0001, η2
p = 0.442, and KEYWORD,

F(3, 371) = 7.397, p < 0.0001, η2
p = 0.119 (both with a large effect size), as well as a

significant interaction effect for GPT × KEYWORD, F(3, 371) = 4.021, p = 0.007, and
η2

p = 0.068 (medium effect size). Post hoc pairwise comparisons using the Wilcoxon signed-
rank test with Bonferroni correction revealed statistically significant differences and notable
trends in both device acceptance and design expectation data, as documented in Table 4.
The results are presented in Figure 9.



Appl. Sci. 2025, 15, 4132 20 of 29

Table 4. Post hoc pairwise comparisons within keywords and GPTs for Likert scores of device
acceptance and design expectation. Significance codes: * (p < 0.05), ** (p < 0.01), *** (p < 0.001),
**** (p < 0.0001), ns = not significant.

Device Acceptance Design Expectation

Pairwise Comparisons n1 n2 Stat. p padj. Sig. Stat. p padj. Sig.

No Keyword—Usability 108 108 1382 0.548 1 ns 1545 0.282 1 ns
No Keyword—Social Acceptability 108 108 1382 0.199 1 ns 1833 0.304 1 ns
No Keyword—Sporty Design 108 108 1110 0.066 0.398 ns 1093 <0.001 0.002 **
Usability—Social Acceptability 108 108 1529 0.325 1 ns 2022 0.030 0.179 ns
Usability—Sporty Design 108 108 732 0.011 0.064 ns 934 <0.001 0.006 **
Social Acceptability—Sporty Design 108 108 1030 0.007 0.042 * 836 <0.001 <0.001 ***

No Keyword: ChatGPT—Orth.FootGPT 54 54 1022 0.007 0.007 ** 819 <0.001 <0.001 ****
Usability: ChatGPT—OrthoticFootGPT 54 54 692 <0.001 <0.001 **** 712 <0.001 <0.001 ****
Social Accept.: ChatGPT—Orth.GPT 54 54 744 <0.001 <0.001 **** 540 <0.001 <0.001 ****
Sporty Design: ChatGPT—Orth.FootGPT 54 54 1212 0.129 0.129 ns 997 0.004 0.004 **
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Figure 9. This figure contains two boxplot diagrams, including the rated device acceptance (a) and
aesthetic design expectation (b) for the four KEYWORDS in each GPT. The x-axis lists the four
Keywords: No Keyword, Usability, Social Acceptability, and Sporty Design. The y-axis represents the
corresponding scores from the Likert rating. The boxplots are color-coded to distinguish the GPT:
ChatGPT in red and OrthoticFootGPT in blue. Asterisks indicate significance levels: * (p < 0.05),
** (p < 0.01), *** (p < 0.001), **** (p < 0.0001).

4.2.3. Qualitative Feedback

An inductive thematic analysis on transcribed data revealed three main themes: Aes-
thetic Design, Functionality, as well as Comfort and Fit. These three themes include both
positive and negative perspectives and reflect the participants’ feedback on the two GPTS

and four KEYWORDS.
Aesthetic Design: The designs with No Keyword were generally described as “standard”

(P141), “simple” (P56), and “not visually appealing” (P61) when generated by ChatGPT.
In contrast, designs generated by OrthoticFootGPT were characterized as “modern” (P83,
P90), “aesthetic” (P9), and “compact” (P60), with a “positive shape and design” (P74)
resembling a “mixture of a boot and a sports shoe” (P102). For the keyword Usability,
ChatGPT designs were recognized as “similar to shoes” (P33) with a “good color” (P14) but
were also criticized for being “old-fashioned” (P21) and “unaesthetic” (P61). Meanwhile,
OrthoticFootGPT designs were praised as “aesthetic” (P56), “modern and sporty” (P21),
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and also “similar to shoes” (P41, P69). Furthermore, one participant stated that “the
eye-catching design ensures that the orthosis is easily recognized by others, which can
lead to more consideration from others” (P108). Images generated using the keyword
Social Acceptability via ChatGPT were described as “minimalistic” (P24) with a “positive
color” (P14), but their perception was negatively impacted by a “dubious shape” (P21)
and “incomprehensible design” (P47). On the other hand, designs from OrthoticFootGPT
were regarded as “very aesthetic and modern” (P41), “sporty” (P24), and featuring a “nice
design” (P83), due to “less conspicuous Velcro fasteners” (P90) and a resemblance to “winter
boots” (P159). In general, the Sporty Design keyword led to designs perceived as modern
and sporty, which were positively received by participants. The ChatGPT outputs were
described as a “nice and modern design” (P24) contributing to a “self-confident appearance”
(P74). In comparison, OrthoticFootGPT designs were associated with a “sporty design” (P9),
resembling “sport shoes” (P74, P102, P138) and perceived as designs that “remind one of a
fashion brand” (P89). It was also positively noted that “the toes are not visible” (P94).

Functionality: The use of No Keyword with ChatGPT raised concerns about functional-
ity, as the designs were perceived as “not effective” (P157) and “not stable” (P90, P150) due
to the “missing insole” (P9, P14) and because they “offer less protection (e.g., no padding)”
(P36). In contrast, the OrthoticFootGPT designs “offer good stability and fulfill [their] func-
tional requirements effectively” (P61) because they are “easy to attach and remove” (P89,
P90, P152). For the keyword Usability, ChatGPT designs were criticized for being “too me-
chanical” (P150) and “complicated to use” (P105, P111, P149). Meanwhile, OrthoticFootGPT
outputs were associated with “simple handling” (P36, P56), due to “a good balance of
stability and comfort” (P36) and because “it also gives the feeling that it has very useful
functions” (P21). In the context of Social Acceptability, ChatGPT designs were described as
“too bulky, seems heavy” (P14), “unrealistic” (P60), and “impractical” (P37), primarily due
to “too many straps” (P9, P89) and “components are mainly made of textile. Water . . . can be
absorbed” (P79). In contrast, OrthoticFootGPT designs were perceived as “very innovative”
(P93), featuring “a good sole, similar to a shoe” (P14), making them an “eye-catcher for
everyone” (P21). Regarding Sporty Design, ChatGPT was noted for its “functional and
rather simple design . . . suitable for a broad target group” (P90). Similarly, OrthoticFootGPT
designs were defined as “robust” (P94), “stable” (P36, P105), and “breathable” (P33), with
functionality that is “easy to integrate for sports activities” (P89).

Comfort and Fit: The primary issues with ChatGPT designs using No Keyword were
identified as being “uncomfortable” (P21) and “impractical due to open toes” (P37), con-
cerns that were similarly reflected in the keywords Usability and Social Acceptability. In
contrast, the OrthoticFootGPT designs with No Keyword were perceived more positively, as
“the orthosis is easily adjustable and can be customized” (P61) and it “has good padding on
the foot” (P36). For the keyword Usability, the OrthoticFootGPT was highlighted for being
”easy to use” (P36) and it “is light and comfortable to wear, even for long periods” (P61),
which could be “suitable for thicker calves” (P74). In the context of Social Acceptability,
designs generated by OrthoticFootGPT were described as resembling a “sport shoe” (P21)
or “winter boots” (P159), with positive feedback emphasizing that “no toes are visible”
(P94). Regarding Sporty Design, a participant described the ChatGPT output as follows: “It
looks like a boot. It does not attract attention and is therefore great for everyday wear. It
makes you feel more confident” (P74). Meanwhile, the OrthoticFootGPT designs were seen
as both “comfortable” (P157) and “sporty” (P47, P60, P92, P101, P117), and they “look like
an orthopedic hiking/running/football shoe” (P157) which is “great for social integration”
(P74). Furthermore, one participant noted that “the orthosis appears to be easy to put on
with the fasteners, which could potentially make everyday life easier for the wearer”, but
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also mentioned negatively that “the unobtrusive design could lead to people taking less
notice of the wearer” (P108).

5. Discussion
5.1. The Impact of AI-Generated and Conventional Orthotic Designs Across Device Categories on
Social Acceptability

In our first study, we conducted a mixed-method online survey to explore the im-
pact of three DESIGN TYPES and four ORTHOTIC CATEGORIES on social acceptance. The
quantitative analyses of Likert scales, as well as the SCM and WEAR models, indicated
that ORTHOTIC CATEGORIES such as Foot Bandages/Textiles achieved significantly higher
acceptance ratings, followed by Foot Drop Orthoses and then Short-Leg and High-Leg Or-
thoses. Furthermore, the Generative AI DESIGN TYPE had a significant impact on perceived
acceptability, as these devices were associated with stereotypes of greater competence and
warmth compared to medical or developmental designs, which confirms our hypothe-
sis. These findings were supported by the qualitative feedback, which highlighted the
potential of using Generative AI to consider user preferences and increase acceptance of
orthopedic footwear.

Overall, these results confirm the potential of integrating AI into the design process
for wearable foot devices. However, the significantly lower acceptance rates for short
and high-leg orthoses represent a consistent challenge that reflects the concerns reported
in previous research. By identifying the challenges of user acceptance associated with
different categories of orthoses, this study contributes to a deeper understanding of the
factors that influence the social acceptance of orthotic devices. Our findings are valuable
for future developments aimed at enhancing the aesthetic design of these devices to better
meet user needs.

5.2. The Impact of GPT Customization and Prompt Keywords on the Social Acceptability of
AI-Generated Orthotic Designs

The second study examined the impact of high-leg orthosis designs generated using
OrthoticFootGPT and ChatGPT, as well as the influence of four different prompt structures
incorporating specific keywords on social acceptability. This extends the results of the first
study to explore if a personalized GPT and specific KEYWORDS can have a systematic
positive influence on user perception. The quantitative results indicate that the customized
OrthoticFootGPT model can enhance acceptance ratings compared to ChatGPT. Additionally,
the study showed that different keywords evoke different stereotypical perceptions of
the wearable device. In particular, the keyword Sporty Design led to significantly better
ratings compared to other keyword variations, suggesting that aesthetic framing plays a
crucial role in user perception. These findings are consistent with the qualitative feedback,
which revealed a discrepancy between the perception of medical orthoses and more so-
cially integrated designs, such as those inspired by the aesthetics of footwear or sports.
Participants expressed contrasting preferences regarding the visual appearance of orthotic
designs: while some preferred an inconspicuous design to avoid attracting attention, others
emphasized that a more visible, eye-catching design could facilitate social recognition and
consideration by others. This contrast illustrates the complexity of the relationship between
aesthetics as well as functional and social expectations.

These results highlight the potential of generative AI to enhance the design process of
wearable medical devices. Furthermore, our results align with previous studies on wearable
device perception, emphasizing that design plays a crucial role in acceptance [35,36].
In addition, these results support earlier findings that highlight a discrepancy in the
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literature regarding the stigmatization of medical devices, where functional necessity often
conflicts with social acceptability, leading to lower acceptance [36].

Similar to findings by Sehrt et al. [50], who observed that wearables positioned on the
ankle received lower social acceptance scores, our study showed that high-leg orthoses face
significant acceptance challenges compared to other orthotic device categories. By demon-
strating that customized GPT models and prompt engineering can systematically shape
social acceptability, our study builds on prior work [22,23] that highlights the importance
of structured input in AI-assisted design.

Therefore, we recommend that future developments prioritize the use of customized
GPT models in combination with personalized prompting strategies that explicitly address
user preferences and social perception factors.

5.3. Implications

The results obtained from the two studies conducted show the potential of genera-
tive AI to improve the social acceptability of foot wearable devices and demonstrate its
applicability in product design. Building on existing work, such as the use of DALL-E
for designing hand orthoses [30], our study extends this approach to foot orthoses, with a
specific focus on social acceptance factors. The integration of image-generative AI in the
design phase can significantly improve acceptance and lead to more user-centered orthosis
designs. In particular, the consideration of user preferences with prompting alongside the
technical functionalities of wearables offers a promising approach for personalization in
product development. Furthermore, the findings from this research extend beyond orthope-
dic footwear, affecting broader applications within the fields of HCI, user experience (UX)
design, and the integration of social factors in product development. Understanding how
AI-generated designs influence product acceptance offers valuable insights for improving
design processes across various applications and product categories. For example, de-
signers can integrate user feedback directly into aesthetic and functional design aspects to
enhance user engagement and satisfaction. Moreover, this study highlights the potential
of generative AI as a valuable tool for inspiring the design of socially driven consumer
products and wearable technology. We recommend the use of customized, fine-tuned GPT
models to generate user-specific outputs that align with product specifications. Further-
more, incorporating specific keywords related to functionality, target user groups, and
design preferences directly within the prompt can enhance the quality and relevance of the
generated results.

Beyond improving social acceptability, AI-generated designs also introduce new op-
portunities for streamlining the product development process. While traditional design
approaches rely entirely on manual modeling, which can be time-consuming and expensive,
especially when adapting to individual user preferences, AI-generated designs still require
manual expert input in the post-processing phase. This includes converting 2D images
into 3D data, adapting the design to specific medical requirements, and preparing the
data for manufacturing. Related work has demonstrated that integrating AI into the shoe
design process can reduce design time by 59% compared to traditional methods while
also lowering production costs [72]. These findings indicate that AI-supported workflows
have the potential to increase efficiency in orthotic design while maintaining a high degree
of individualization.

5.4. Limitations

Our studies have some limitations that affect the generalizability of the results. Al-
though our studies included participants from various backgrounds, the lack of gender
balance in the first study and the inclusion of healthy individuals in both studies could
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potentially affect the external validity. However, our analysis showed that demographic fac-
tors did not systematically influence participants’ ratings, which indicates that the observed
effects are not due to the sample population. Nevertheless, a more patient-centered focus
could provide deeper insights into the specific needs and perceptions of individuals with
orthopedic conditions. While some results did not reach statistical significance, they indi-
cate notable trends that suggest potential effects worth further investigation. Furthermore,
the results are limited to the specific stimuli and orthotic categories that were used in the
study. Additionally, the AI-generated designs, which rely on individual prompts or selected
pictures of orthopedic products, cannot be consistently reproduced with identical inputs.
This inconsistency requires multiple iterations of prompts to achieve the desired outcomes.

Another notable limitation is that AI-generated designs do not adhere to any medical
guidelines or standards, as they are primarily visual concepts rather than functional proto-
types. While the prompts and images were adjusted to the medical functions and specific
requirements of the selected orthosis categories, DALL-E image generation is not special-
ized for medical functions and does not take manufacturing constraints or biocompatibility
into account. The results are limited to the perspective of end users and do not consider
technical aspects that are relevant from an expert perspective, such as material feasibility
or regulatory compliance.

The generative AI tool DALL-E was limited to its current version during both studies.
Furthermore, biases in the training datasets of AI models could reinforce stereotypes (e.g.,
related to ethnicity, gender, or other factors) [73]. These factors are critical as they could
influence the social acceptance of the designs, particularly if they fail to address the needs
and preferences of various user groups or if they misrepresent them. Therefore, any appli-
cation of such AI-generated designs in real-world medical products must carefully consider
and comply with strict regulatory standards to ensure their safety and effectiveness.

5.5. Future Work

The growing field of AI applications will contribute to opening new possibilities for
user-centered design solutions. The potential for generating 3D models that are compatible
with Computer-Aided Design (CAD) software could significantly enhance the develop-
ment process, particularly in the area of rapid prototyping. Future developments should
focus on training device-specific GPTs to generate tailored image outputs that meet user
needs. Moreover, refining and validating prompt structures will be crucial to achieving
more personalized results. Furthermore, to better understand the context and impact of AI-
generated designs on social acceptability, future research should extend beyond orthopedic
footwear to include diverse product categories. This extension would provide a comprehen-
sive overview of how generative AI can influence product acceptance in different fields. By
addressing these areas, follow-up work can make an important contribution to the further
development of AI in product design and potentially lead to more effective and socially
accepted solutions. Follow-up studies should include a more diverse participant sample,
focused on individuals with orthopedic conditions, to better understand user-specific
requirements. An exemplary case study could demonstrate how AI-generated design
can be integrated into a patient-centric design process that covers the entire workflow,
including patient requirements, AI-based design generation, post-processing of 3D models,
product personalization based on anatomical needs, manufacturing aspects, and product
testing. While long-term biocompatibility testing may be required for regulatory approval,
initial usability studies can focus on short-term comfort and usability. Additionally, human
intervention by expert designers remains essential to test, validate, and refine AI-generated
outputs to ensure practical applicability and manufacturability.
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To ensure that AI-generated orthotic designs consider different cultural factors, AI
models should be trained on datasets that are representative of diverse user demographics.
Additionally, engaging patients with orthopedic conditions in co-design sessions can
help align AI-generated outputs with real-life needs and prevent the reinforcement of
stereotypes in training data. Involving clinicians, orthopedic experts, and diverse patient
representatives in the AI design evaluation process ensures that biased or stereotypical
outputs are identified and corrected early. Future research must critically evaluate these
biases and develop strategies to ensure that AI-assisted design workflows align with ethical
principles and medical standards.

6. Conclusions
In this paper, we explored the influence of image-generative AI on the social acceptance

of footwear designs through two studies involving 134 participants. Our first study demon-
strated that AI-generated designs can significantly enhance perceived user acceptance
compared to conventional designs. The second study showed that customizing prompts
with specific keywords and using a personalized GPT can better tailor these designs to
user preferences and therefore improve acceptance. These findings suggest that integrating
image-generative AI with personalized prompting strategies in the design process could
transform how these devices are perceived and accepted, aligning product functionality
with user expectations more effectively. This approach introduces a new framework for
user-centric design processes, leveraging AI-driven systems to adapt designs based on spe-
cific user inputs. Our findings are not limited to medical wearables and could be extended
to various applications and products. Overall, this study enhances our understanding
of how AI-generated outputs impact user perception, setting the groundwork for future
research to explore new GPT models and expand these findings across different contexts.
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